Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 13;10(23):19682-19688.
doi: 10.1021/acsami.8b03958. Epub 2018 May 29.

Hierarchical Pore-Patterned Carbon Electrodes for High-Volumetric Energy Density Micro-Supercapacitors

Affiliations

Hierarchical Pore-Patterned Carbon Electrodes for High-Volumetric Energy Density Micro-Supercapacitors

Cheolho Kim et al. ACS Appl Mater Interfaces. .

Abstract

Micro-supercapacitors (MSCs) are attractive for applications in next-generation mobile and wearable devices and have the potential to complement or even replace lithium batteries. However, many previous MSCs have often exhibited a low volumetric energy density with high-loading electrodes because of the nonuniform pore structure of the electrodes. To address this issue, we introduced a uniform-pore carbon electrode fabricated by 3D interference lithography. Furthermore, a hierarchical pore-patterned carbon (hPC) electrode was formed by introducing a micropore by chemical etching into the macropore carbon skeleton. The hPC electrodes were applied to solid-state MSCs. We achieved a constant volumetric capacitance and a corresponding volumetric energy density for electrodes of various thicknesses. The hPC MSC reached a volumetric energy density of approximately 1.43 mW h/cm3. The power density of the hPC MSC was 1.69 W/cm3. We could control the capacitance and voltage additionally by connecting the unit MSC cells in series or parallel, and we confirmed the operation of a light-emitting diode. We believe that our pore-patterned electrodes will provide a new platform for compact but high-performance energy storage devices.

Keywords: carbonization; hierarchical pores; interference lithography; micro-supercapacitors; volumetric energy densities.

PubMed Disclaimer

LinkOut - more resources