Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul;64(7):1054-1062.
doi: 10.1373/clinchem.2017.283531. Epub 2018 May 16.

RNA Profiles of Circulating Tumor Cells and Extracellular Vesicles for Therapy Stratification of Metastatic Breast Cancer Patients

Affiliations

RNA Profiles of Circulating Tumor Cells and Extracellular Vesicles for Therapy Stratification of Metastatic Breast Cancer Patients

Corinna Keup et al. Clin Chem. 2018 Jul.

Abstract

Background: Liquid biopsies are discussed to provide surrogate markers for therapy stratification and monitoring. We compared messenger RNA (mRNA) profiles of circulating tumor cells (CTCs) and extracellular vesicles (EVs) in patients with metastatic breast cancer (MBC) to estimate their utility in therapy management.

Methods: Blood was collected from 35 hormone receptor-positive/HER2-negative patients with MBC at the time of disease progression and at 2 consecutive staging time points. CTCs were isolated from 5 mL of blood by positive immunomagnetic selection, and EVs from 4 mL of plasma by a membrane affinity-based procedure. mRNA was reverse transcribed, preamplified, and analyzed for 18 genes by multimarker quantitative polymerase chain reaction (qPCR) assays. RNA profiles were normalized to healthy donor controls (n = 20), and results were correlated with therapy outcome.

Results: There were great differences in mRNA profiles of EVs and CTCs, with only 5% (21/403) of positive signals identical in both fractions. Transcripts involved in the PI3K signaling pathway were frequently overexpressed in CTCs, and AURKA, PARP1, and SRC signals appeared more often in EVs. Of all patients, 40% and 34% showed ERBB2 and ERBB3 signals, respectively, in CTCs, which was significantly associated with disease progression (P = 0.007). Whereas MTOR signals in CTCs significantly correlated with response (P = 0.046), signals in EVs indicated therapy failure (P = 0.011). The presence of AURKA signals in EVs seemed to be a marker for the indication of unsuccessful treatment of bone metastasis.

Conclusions: These results emphasize the potential of CTCs and EVs for therapy monitoring and the need for critical evaluation of the implementation of any liquid biopsy in clinical practice.

PubMed Disclaimer