Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May 16;10(5):99-108.
doi: 10.4253/wjge.v10.i5.99.

Different options of endosonography-guided biliary drainage after endoscopic retrograde cholangio-pancreatography failure

Affiliations

Different options of endosonography-guided biliary drainage after endoscopic retrograde cholangio-pancreatography failure

José Celso Ardengh et al. World J Gastrointest Endosc. .

Abstract

Aim: To investigate the success rates of endosonography (EUS)-guided biliary drainage (EUS-BD) techniques after endoscopic retrograde cholangiopancreatography (ERCP) failure for management of biliary obstruction.

Methods: From Feb/2010 to Dec/2016, ERCP was performed in 3538 patients, 24 of whom (0.68%) suffered failure to cannulate the biliary tree. All of these patients were initially submitted to EUS-guided rendez-vous (EUS-RV) by means of a transhepatic approach. In case of failure, the next approach was an EUS-guided anterograde stent insertion (EUS-ASI) or an EUS-guided hepaticogastrostomy (EUS-HG). If a transhepatic approach was not possible or a guidewire could not be passed through the papilla, EUS-guided choledochoduodenostomy (EUS-CD) was performed.

Results: Patients were submitted to EUS-RV (7), EUS-ASI (5), EUS-HG (6), and EUS-CD (6). Success rates did not differ among the various EUS-BD techniques. Overall, technical and clinical success rates were 83.3% and 75%, respectively. Technical success for each technique was, 71.4%, 100%, 83.3%, and 83.3%, respectively (P = 0.81). Complications occurred in 3 (12.5%) patients. All of these cases were managed conservatively, but one patient died after rescue percutaneous transhepatic biliary drainage (PTBD).

Conclusion: The choice of a particular EUS-BD technique should be based on patient's anatomy and on whether the guidewire could be passed through the duodenal papilla.

Keywords: Cholestasis; Drainage; Endosonography; Interventional procedures; Jaundice; Neoplasms.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: No potential conflicts of interest relevant to this article were reported.

Figures

Figure 1
Figure 1
The systematic endosonography-guided biliary drainage approach for endoscopic retrograde cholangiopancreatography failure. PTBD: Percutaneous transhepatic biliary drainage; EUS-CD: Endosonography-guided choledochoduodenostomy; EUS-HG: Endosonography-guided hepaticogastrostomy; EUS-ASI: Endosonography-guided anterograde stent insertion; EUS-RV: Endosonography-guided rendez-vous.
Figure 2
Figure 2
Patient with acute pancreatitis after cholecystectomy and Billroth II gastrectomy. Endosonography (EUS)-guided rendez-vous technique. A: EUS image with dilation of the intrahepatic biliary duct; B: EUS-guided cholangiography; C: Insertion of the guidewire across the duodenal papilla and positioning in the duodenum; D: Capture of the guidewire with a frontal view endoscope; E: Balloon dilatation of the duodenal papilla; F: Insertion of a 10 Fr plastic stent.
Figure 3
Figure 3
Patient with duodenal stenosis due to a pancreatic carcinoma. A: Endosonography (EUS)-guided cholangiography; B: Insertion of the guidewire through the duodenal major papilla and positioning in the duodenum; C: Anterograde insertion of the self-expandable metallic stents (SEMS) through the gastric wall across the duodenal major papilla and its positioning in the duodenum; D: Deployment of the SEMS; E: Insertion of the duodenal SEMS. SEMS: Self-expandable metallic stents.
Figure 4
Figure 4
Endosonography-guided hepatogastrostomy. A: Endosonography (EUS) puncture of the dilated biliary intrahepatic duct; B: EUS-guided cholangiography; C and D: Deployment and positioning of the biliary self-expandable metallic stents (SEMS); E: Endoscopic view of the SEMS through the gastric wall.
Figure 5
Figure 5
Endosonography-guided choledochoduodenostomy. A: Endosonography (EUS) image of the pancreatic carcinoma; B: Puncture of the common bile duct through the duodenum with a 19 gauge aspiration needle; C: Insertion of the self-expandable metallic stents after balloon dilation of the fistula; D: EUS-guided cholangiography through the choledochoduodenostomy.

Similar articles

Cited by

References

    1. Carr-Locke DL. Overview of the role of ERCP in the management of diseases of the biliary tract and the pancreas. Gastrointest Endosc. 2002;56:S157–S160. - PubMed
    1. Fogel EL, Sherman S, Devereaux BM, Lehman GA. Therapeutic biliary endoscopy. Endoscopy. 2001;33:31–38. - PubMed
    1. Peng C, Nietert PJ, Cotton PB, Lackland DT, Romagnuolo J. Predicting native papilla biliary cannulation success using a multinational Endoscopic Retrograde Cholangiopancreatography (ERCP) Quality Network. BMC Gastroenterol. 2013;13:147. - PMC - PubMed
    1. Williams EJ, Ogollah R, Thomas P, Logan RF, Martin D, Wilkinson ML, Lombard M. What predicts failed cannulation and therapy at ERCP? Results of a large-scale multicenter analysis. Endoscopy. 2012;44:674–683. - PubMed
    1. Ferrucci JT Jr, Mueller PR, Harbin WP. Percutaneous transhepatic biliary drainage: technique, results, and applications. Radiology. 1980;135:1–13. - PubMed