Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May 18;18(1):572.
doi: 10.1186/s12885-018-4484-5.

Increased systemic zonula occludens 1 associated with inflammation and independent biomarker in patients with hepatocellular carcinoma

Affiliations

Increased systemic zonula occludens 1 associated with inflammation and independent biomarker in patients with hepatocellular carcinoma

Amit Kumar Ram et al. BMC Cancer. .

Abstract

Background: Hepatocellular carcinoma (HCC) is a frequent type of primary liver cancer, and its prevalence is increasing worldwide. Indeed, the underlying molecular mechanism is not well understood. Previous studies have shown evidence that tight junction (TJ) components were correlated with carcinogenesis and tumor development. Our aims were to determine the serum levels of tight junction protein Zonula Occludens (ZO)-1 and an inflammatory marker such as high-sensitive C-reactive protein (hs-CRP) in HCC patients compared to healthy volunteers and also to identify the association between ZO-1 and inflammation in HCC.

Methods: Thirty HCC patients and 30 healthy volunteers were recruited in the current study. Clinical data regarding child class, BCLC staging, the number of lesions, tumor size, absence or presence of metastasis, cirrhosis and hepatitis infection were also collected in HCC patients. Plasma ZO-1 and serum hsCRP were analyzed by EIA and ELISA respectively and biochemical parameters by autoanalyser (AU680 Beckman Coulter, USA). Furthermore, hepatic ZO-1 protein expression and tissue localization were examined.

Results: Compared to healthy individuals, the serum levels of bilirubin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT) and alkaline phosphatase (ALP) were elevated significantly (P < 0.0001) whilst serum albumin level was significantly (P < 0.0001) decreased in HCC patients. Furthermore, tight junction protein ZO-1 concentration was significantly elevated in HCC patients compared to control subjects (648 ± 183.8 vs. 396.4 ± 135.8 pg/ml, respectively; P < 0.0001). Serum hsCRP level was also significantly increased in HCC patients compared to control subjects (17.25 ± 3.57 vs. 5.54 ± 2.62 mg/L, respectively; P < 0.0001). Moreover, decreased protein expression of ZO-1 was found in liver tissue obtained from HCC patients.

Conclusion: Our findings show for the first time that the systemic concentration of ZO-1 was significantly elevated in HCC patients and is positively correlated with inflammatory markers. Thus, the current study showing evidence that inflammation promotes plasma ZO-1 concentration and raises the possibility that it could be used as a potential diagnostic biomarker for HCC progression.

Keywords: Blood biomarker; Hepatic marker enzymes; Inflammation; Liver cancer; Tight junction.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

The study was reviewed and approved by the JIPMER scientific advisory committee and institutional human ethics committee (Reg.No: ECRl342/1nst/PY/2013). All patients were provided with informed written consent regarding the data collection and scientific publication.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
a Plasma ZO-1 levels in healthy volunteers and HCC patients. Values are expressed as mean ± standard deviation. P < 0.0001, controls Vs HCC. b Plasma ZO-1 levels according to Child-Pugh class in HCC patients. Values are expressed as mean ± standard deviation. ***P = 0.0003, Child-Pugh class A Vs C ***P = 0.0004, Child-Pugh class B Vs C; ns-No significant. c Plasma ZO-1 levels according to BCLC staging system in HCC patients. Values are expressed as mean ± standard deviation. ****P < 0.0001, BCLC staging B Vs D; **P < 0.01, BCLC staging C Vs D; ns-No significant
Fig. 2
Fig. 2
a Serum hs-CRP levels in healthy volunteers and HCC patients. Values are expressed as mean ± standard deviation. p < 0.0001, controls Vs HCC. b Serum hs-CRP levels according to Child-Pugh class in HCC patients. Values are expressed as mean ± standard deviation. **P < 0.01, Child-Pugh class A Vs B and A Vs C, respectively. c Serum hs-CRP levels according to BCLC staging system in HCC patients. Values are expressed as mean ± standard deviation. ns-No significant
Fig. 3
Fig. 3
Prognostic potential of serum ZO-1 in HCC patients. Serum ZO-1 levels were positively correlated with increased hsCRP in HCC. Correlation coefficient (r) and statistical significance (p value) are indicated. Individual samples are represented as dots (n = 28)
Fig. 4
Fig. 4
ROC curve analysis of ZO-1 (a) and hs-CRP (b). ZO-1 at cut off of 472.99 (pg/ml) had a sensitivity of 76.92%, specificity of 80.00% with AUC of 0.8692. hs-CRP at cut off of 9.2 (mg/L) had a sensitivity of 86.67%, specificity of 85.00% with Area Under Curve of 0.8767
Fig. 5
Fig. 5
Protein expression of ZO-1 in HCC liver and noncancerous liver tissues (histologically proven control) from HCC patients. Values are expressed as mean ± standard deviation. P < 0.05, controls Vs HCC
Fig. 6
Fig. 6
Immunohistochemical localization of ZO-1 in noncancerous liver tissue (histologically proven control) (a) and HCC liver (b) from HCC patients. ZO-1 is not expressed in HCC liver (b), whereas control liver tissue (a) expressed increased ZO-1 particularly in the bile ducts

References

    1. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365(12):1118–1127. doi: 10.1056/NEJMra1001683. - DOI - PubMed
    1. Ghouri YA, Mian I, Rowe JH. Review of hepatocellular carcinoma: epidemiology, etiology, and carcinogenesis. J Carcinog. 2017;16:1. doi: 10.4103/jcar.JCar_9_16. - DOI - PMC - PubMed
    1. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379(9822):1245–1255. doi: 10.1016/S0140-6736(11)61347-0. - DOI - PubMed
    1. Ohnishi K, Iida S, Iwama S, Goto N, Nomura F, Takashi M, Mishima A, Kono K, Kimura K, Musha H, et al. The effect of chronic habitual alcohol intake on the development of liver cirrhosis and hepatocellular carcinoma: relation to hepatitis B surface antigen carriage. Cancer. 1982;49(4):672–677. doi: 10.1002/1097-0142(19820215)49:4<672::AID-CNCR2820490415>3.0.CO;2-#. - DOI - PubMed
    1. Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB. Hepatitis C infection and the increasing incidence of hepatocellular carcinoma: a population-based study. Gastroenterology. 2004;127(5):1372–1380. doi: 10.1053/j.gastro.2004.07.020. - DOI - PubMed