Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 25:75:67-76.
doi: 10.1016/j.jbiomech.2018.04.046. Epub 2018 May 16.

Correlation between translational and rotational kinematic abnormalities and osteoarthritis-like damage in two in vivo sheep injury models

Affiliations

Correlation between translational and rotational kinematic abnormalities and osteoarthritis-like damage in two in vivo sheep injury models

Mehdi Shekarforoush et al. J Biomech. .

Abstract

The relations between kinematic abnormalities and post traumatic osteoarthritis have not yet been clearly elucidated. This study was conducted to determine the finite helical axes parameters and the tibiofemoral translation vector in the knee joints of two surgically induced injury sheep models: anterior cruciate ligament and medial collateral ligament transection (ACL/MCL Tx) (n = 5) and lateral meniscectomy (n = 5). We hypothesized that morphological damage in the experimental joints would be correlated to alterations in these kinematic variables. There was no strong evidence that morphological damage to the joints 20 weeks post ACL/MCL transection or meniscectomy was correlated with alterations in the finite helical axes variables. Nevertheless, significant correlations were found between the morphological damage to the joints and the magnitude of the change in the translation vectors after ACL/MCL transection (significant correlations (p = 0.005) during stance and trends (p < 0.1) at all points analyzed during swing). It can be concluded that: (1) osteoarthritic-like morphological damage after ACL/MCL transection is more critically correlated to the absolute tibiofemoral translational change and (2) alterations in analyzed kinematic variables cannot solely define osteoarthritis risk after meniscal injuries. From a clinical perspective, our results suggest that the magnitude of the change in the translation vector, which is independent of the coordinate system and combines the effects of the three translational degrees of freedom, i.e. medial-lateral, anterior-posterior and inferior-superior, would be an osteoarthritis risk factor after ligament injury, and requires validation in humans.

Keywords: Gait; Helical axis; Kinematics; Knee injury; Post-traumatic osteoarthritis.

PubMed Disclaimer

Publication types

Grants and funding

LinkOut - more resources