Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May 4:8:116.
doi: 10.3389/fcimb.2018.00116. eCollection 2018.

Rhipicephalus bursa Sialotranscriptomic Response to Blood Feeding and Babesia ovis Infection: Identification of Candidate Protective Antigens

Affiliations

Rhipicephalus bursa Sialotranscriptomic Response to Blood Feeding and Babesia ovis Infection: Identification of Candidate Protective Antigens

Sandra Antunes et al. Front Cell Infect Microbiol. .

Abstract

Ticks are among the most prevalent blood-feeding arthropods, and they act as vectors and reservoirs for numerous pathogens. Sialotranscriptomic characterizations of tick responses to blood feeding and pathogen infections can offer new insights into the molecular interplay occurring at the tick-host-pathogen interface. In the present study, we aimed to identify and characterize Rhipicephalus bursa salivary gland (SG) genes that were differentially expressed in response to blood feeding and Babesia ovis infection. Our experimental approach consisted of RNA sequencing of SG from three different tick samples, fed-infected, fed-uninfected, and unfed-uninfected, for characterization and inter-comparison. Overall, 7,272 expressed sequence tags (ESTs) were constructed from unfed-uninfected, 13,819 ESTs from fed-uninfected, and 15,292 ESTs from fed-infected ticks. Two catalogs of transcripts that were differentially expressed in response to blood feeding and B. ovis infection were produced. Four genes coding for a putative vitellogenin-3, lachesin, a glycine rich protein, and a secreted cement protein were selected for RNA interference functional studies. A reduction of 92, 65, and 51% was observed in vitellogenin-3, secreted cement, and lachesin mRNA levels in SG, respectively. The vitellogenin-3 knockdown led to increased tick mortality, with 77% of ticks dying post-infestation. The reduction of the secreted cement protein-mRNA levels resulted in 46% of ticks being incapable of correctly attaching to the host and significantly lower female weights post-feeding in comparison to the control group. The lachesin knockdown resulted in a 70% reduction of the levels associated with B. ovis infection in R. bursa SG and 70% mortality. These results improved our understanding of the role of tick SG genes in Babesia infection/proliferation and tick feeding. Moreover, lachesin, vitellogenin-3, and secreted cement proteins were validated as candidate protective antigens for the development of novel tick and tick-borne disease control measures.

Keywords: Babesia spp.; RNA interference; Rhipicephalus bursa; sialotranscriptomics; vaccine; vector-pathogen interactions.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Radar plots of the three transcriptomes per represented molecular functions (A) and biological processes (B). The lines represent a pattern of the three transcriptomes unfed-uninfected, fed-uninfected and fed-Babesia ovis infected, allowing a visual comparison between conditions.
Figure 2
Figure 2
Rhipicephalus bursa SG transcriptional response to blood meal based on Gene Ontology functional classes assignments of encoded proteins. Yellow bars represent down regulated genes, orange bars represent up regulated genes with statistical significance (P < 0.05).
Figure 3
Figure 3
Rhipicephalus bursa SG transcriptional response to Babesia ovis infection based on Gene Ontology functional classes assignments of encoded proteins. Gray bars represent down regulated genes and blue bars represent up regulated genes with statistical significance (P < 0.05).
Figure 4
Figure 4
Differentially gene expression of Rhipicephalus bursa SG in response to blood feeding evaluated by qPCR. Red bars represent SG from fed R. bursa ticks and green bars represent the SG from unfed R. bursa ticks. *P < 0.05.
Figure 5
Figure 5
Differentially gene expression of Rhipicephalus bursa SG in response to Babesia ovis infection evaluation by qPCR. Red bars represent the B. ovis infected SG and green bars represent the SG from uninfected R. bursa ticks. *P < 0.05.
Figure 6
Figure 6
Proposed model of putative vitellogenin-3, cement protein and lachesin functions and its impact on Rhipicephalus bursa SG during feeding and Babesia ovis infection. (A) Vitellogenin-3 described function relates to heme detoxification and lipid storage contributing for cell survival. A decrease of the expression of putative vitellogenin-3 leads to deficient heme seizure, increasing the formation of reactive oxygen species (ROS) as well as cellular toxicity. Lipid storage is also compromised leading to an unbalance in the production of energy. (B) Putative cement protein is a component of the cement cone, which facilitates the tick attachment and feed on the host. An impact in the production of cement proteins leads to an incapacity of ticks to correctly attach and subsequently feed on the host, resulting in tick death and reduced blood ingestion. (C) Lachesin is a cell surface protein that as a potential role in cell adhesion, maintaining apical-basal polarity, vesicle trafficking, cell growth and survival, as well as parasite invasion. A negative manipulation of the expression of lachesin results in an abnormal cell growth and ultimately cell apoptosis, and also a decrease of Babesia spp. infection.

Similar articles

Cited by

References

    1. Aktaş M., Altay K., Dumanli N. (2005). Development of a polymerase chain reaction method for diagnosis of Babesia ovis infection in sheep and goats. Vet. Parasitol. 133, 277–281. 10.1016/j.vetpar.2005.05.057 - DOI - PubMed
    1. Anatriello E., Ribeiro J. M. C., de Miranda-Santos I. K. F., Brandao L. G., Anderson J. M., Valenzuela J. G., et al. (2010). An insight into the sialotranscriptome of the brown dog tick, Rhipicephalus sanguineus. BMC Genomics 11:450 10.1186/1471-2164-11-450 - DOI - PMC - PubMed
    1. Antunes S., Galindo R. C., Almazan C., Rudenko N., Golovchenko M., Grubhoffer L., et al. (2012). Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite, Babesia bigemina. Int. J. Parasitol. 42, 187–195. 10.1016/j.ijpara.2011.12.003 - DOI - PubMed
    1. Antunes S., Rosa C., Couto J., Ferrolho J., Domingos A. (2017). Deciphering Babesia-vector interactions. Front. Cell. Infect. Microbiol. 7:429. 10.3389/fcimb.2017.00429 - DOI - PMC - PubMed
    1. Ayllón N., Villar M., Busby A. T., Kocan K. M., Blouin E. F., Bonzon-Kulichenko E., et al. (2013). Anaplasma phagocytophilum inhibits apoptosis and promotes cytoskeleton rearrangement for infection of tick cells. Infect. Immun. 81, 2415–2425. 10.1128/IAI.00194-13 - DOI - PMC - PubMed

Publication types