Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities
- PMID: 29781621
- DOI: 10.1021/acs.nanolett.8b01170
Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities
Abstract
Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ∼50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ∼30% decrease of emission lifetime is observed. The statistics of photons emitted from the cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ∼1.7 × 107 Hz.
Keywords: Carbon nanotubes; diazonium doping; photoluminescence; photonic crystal; single-photon source.
Similar articles
-
Optical coupling of individual air-suspended carbon nanotubes to silicon microcavities.Proc Jpn Acad Ser B Phys Biol Sci. 2024;100(6):320-334. doi: 10.2183/pjab.100.022. Proc Jpn Acad Ser B Phys Biol Sci. 2024. PMID: 38866479 Free PMC article. Review.
-
Room-temperature single-photon generation from solitary dopants of carbon nanotubes.Nat Nanotechnol. 2015 Aug;10(8):671-5. doi: 10.1038/nnano.2015.136. Epub 2015 Jul 13. Nat Nanotechnol. 2015. PMID: 26167766
-
Solitary Oxygen Dopant Emission from Carbon Nanotubes Modified by Dielectric Metasurfaces.ACS Nano. 2017 Jun 27;11(6):6431-6439. doi: 10.1021/acsnano.7b02951. Epub 2017 Jun 5. ACS Nano. 2017. PMID: 28535349
-
Correlation Measurements for Carbon Nanotubes with Quantum Defects.ACS Nano. 2024 Apr 2;18(13):9525-9534. doi: 10.1021/acsnano.3c12530. Epub 2024 Mar 21. ACS Nano. 2024. PMID: 38513118
-
New Light on Molecule-Nanotube Hybrids.Adv Mater. 2019 Nov;31(48):e1902917. doi: 10.1002/adma.201902917. Epub 2019 Sep 25. Adv Mater. 2019. PMID: 31553098 Review.
Cited by
-
Optical coupling of individual air-suspended carbon nanotubes to silicon microcavities.Proc Jpn Acad Ser B Phys Biol Sci. 2024;100(6):320-334. doi: 10.2183/pjab.100.022. Proc Jpn Acad Ser B Phys Biol Sci. 2024. PMID: 38866479 Free PMC article. Review.
-
Carbon Nanotube Devices for Quantum Technology.Materials (Basel). 2022 Feb 18;15(4):1535. doi: 10.3390/ma15041535. Materials (Basel). 2022. PMID: 35208080 Free PMC article. Review.
-
Formation of organic color centers in air-suspended carbon nanotubes using vapor-phase reaction.Nat Commun. 2022 May 20;13(1):2814. doi: 10.1038/s41467-022-30508-z. Nat Commun. 2022. PMID: 35595760 Free PMC article.
-
Deterministic Formation of Single Organic Color Centers in Single-Walled Carbon Nanotubes.Nano Lett. 2025 Sep 3;25(35):13103-13109. doi: 10.1021/acs.nanolett.5c02378. Epub 2025 Aug 21. Nano Lett. 2025. PMID: 40841336 Free PMC article.
-
Cavity-enhanced photon indistinguishability at room temperature and telecom wavelengths.Nat Commun. 2024 May 11;15(1):3989. doi: 10.1038/s41467-024-48119-1. Nat Commun. 2024. PMID: 38734738 Free PMC article.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources