Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May 6:(135):56932.
doi: 10.3791/56932.

A Preclinical Mouse Model of Osteosarcoma to Define the Extracellular Vesicle-mediated Communication Between Tumor and Mesenchymal Stem Cells

Affiliations

A Preclinical Mouse Model of Osteosarcoma to Define the Extracellular Vesicle-mediated Communication Between Tumor and Mesenchymal Stem Cells

Tonny Lagerweij et al. J Vis Exp. .

Abstract

Within the tumor microenvironment, resident or recruited mesenchymal stem cells (MSCs) contribute to malignant progression in multiple cancer types. Under the influence of specific environmental signals, these adult stem cells can release paracrine mediators leading to accelerated tumor growth and metastasis. Defining the crosstalk between tumor and MSCs is of primary importance to understand the mechanisms underlying cancer progression and identify novel targets for therapeutic intervention. Cancer cells produce high amounts of extracellular vesicles (EVs), which can profoundly affect the behavior of target cells in the tumor microenvironment or at distant sites. Tumor EVs enclose functional biomolecules, including inflammatory RNAs and (onco)proteins, that can educate stromal cells to enhance the metastatic behavior of cancer cells or to participate in the pre-metastatic niche formation. In this article, we describe the development of a preclinical cancer mouse model that enables specific evaluation of the EV-mediated crosstalk between tumor and mesenchymal stem cells. First, we describe the purification and characterization of tumor-secreted EVs and the assessment of the EV internalization by MSCs. We then make use of a multiplex bead-based immunoassay to evaluate the alteration of the MSC cytokine expression profile induced by cancer EVs. Finally, we illustrate the generation of a bioluminescent orthotopic xenograft mouse model of osteosarcoma that recapitulates the tumor-MSC interaction, and show the contribution of EV-educated MSCs to tumor growth and metastasis formation. Our model provides the opportunity to define how cancer EVs shape a tumor-supporting environment, and to evaluate whether blockade of the EV-mediated communication between tumor and MSCs prevents cancer progression.

PubMed Disclaimer

References

    1. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646–674. - PubMed
    1. Karnoub AE, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557–563. - PubMed
    1. Jung Y, et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun. 2013;4:1795. - PMC - PubMed
    1. Shahar T, et al. Percentage of mesenchymal stem cells in high-grade glioma tumor samples correlates with patient survival. Neuro Oncol. 2016;19(5) - PMC - PubMed
    1. Behnan J, et al. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression. Stem Cells. 2014;32(5):1110–1123. - PubMed

Publication types

LinkOut - more resources