Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Oct;1(3):245-50.

Selenocysteine, a highly specific component of certain enzymes, is incorporated by a UGA-directed co-translational mechanism

Affiliations
  • PMID: 2978458

Selenocysteine, a highly specific component of certain enzymes, is incorporated by a UGA-directed co-translational mechanism

A Böck et al. Biofactors. 1988 Oct.

Erratum in

  • Biofactors 1988 Dec;1(4):319

Abstract

The opal termination codon UGA is used in both prokaryotic and eukaryotic species to direct the specific insertion of selenocysteine into certain selenium-dependent enzymes. So far a formate dehydrogenase (hydrogenase-linked) of Escherichia coli and glutathione peroxidases of murine, human and rat origin have been identified as enzymes containing selenocysteine residues encoded by UGA. A novel seryl-tRNA, anticodon UCA, that specifically recognizes the UGA codon is required for selenocysteine incorporation into formate dehydrogenase. A eukaryotic UGA suppressor tRNA with UCA anticodon that accepts serine and is phosphorylated to O-phosphoseryl-tRNA may have a corresponding function in glutathione peroxidase synthesis. Other factors required for the unusual usage of the in-frame UGA codons to specify selenocysteine incorporation and the biochemical mechanism involved in distinguishing these from normal UGA termination codons are discussed.

PubMed Disclaimer

Publication types