Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 16;57(29):9044-9047.
doi: 10.1002/anie.201805071. Epub 2018 Jun 15.

Room-Temperature Ferroelectricity in an Organic Cocrystal

Affiliations
Free article

Room-Temperature Ferroelectricity in an Organic Cocrystal

Ren A Wiscons et al. Angew Chem Int Ed Engl. .
Free article

Abstract

Ferroelectric materials exhibit switchable remanent polarization due to reversible symmetry breaking under an applied electric field. Previous research has leveraged temperature-induced neutral-ionic transitions in charge-transfer (CT) cocrystals to access ferroelectrics that operate through displacement of molecules under an applied field. However, displacive ferroelectric behavior is rare in organic CT cocrystals and achieving a Curie temperature (TC ) above ambient has been elusive. Here a cocrystal between acenaphthene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane is presented that shows switchable remanent polarization at room temperature (TC =68 °C). Raman spectroscopy, X-ray diffraction, and solid-state NMR spectroscopy indicate the ferroelectric behavior is facilitated by acenaphthene (AN) rotation, deviating from conventional design strategies for CT ferroelectrics. These findings highlight the relevance of non-CT interactions in the design of displacive ferroelectric cocrystals.

Keywords: charge transfer; crystal engineering; ferroelectrics; organic electronics; polarization.

PubMed Disclaimer

LinkOut - more resources