Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 1;159(7):2790-2802.
doi: 10.1210/en.2018-00344.

The Hepatic Glucocorticoid Receptor Is Crucial for Cortisol Homeostasis and Sepsis Survival in Humans and Male Mice

Affiliations

The Hepatic Glucocorticoid Receptor Is Crucial for Cortisol Homeostasis and Sepsis Survival in Humans and Male Mice

Marc Jenniskens et al. Endocrinology. .

Abstract

Sepsis is hallmarked by hypercortisolemia, a stress response essential for survival. This elevation in plasma cortisol is partially brought about by suppressed hepatic cortisol breakdown. We demonstrate that a controlled downregulation of the hepatic glucocorticoid receptor (hepatic GR) is crucial. In a mouse model of fluid-resuscitated, antibiotic-treated abdominal sepsis and in human intensive care unit patients, sepsis reduced hepatic GR expression and signaling but increased (free) plasma cortisol/corticosterone, explained by suppressed cortisol/corticosterone-binding proteins and A-ring reductases. However, further experimental inhibition of hepatic GR with short hairpin RNA (shRNA) in septic mice increased mortality fivefold. Acutely, this further hepatic GR suppression prevented the rise in total corticosterone but further reduced binding proteins, resulting in elevated free corticosterone. After 3 days of shRNA-GR inhibition in sepsis, both total and free corticosterone levels were elevated, now explained by an additional reduction in A-ring reductase expression. Hepatic GR inhibition blunted the hyperglycemic stress response without causing hypoglycemia but also markedly increased circulating and hepatic inflammation markers and caused liver destruction, the severity of which explained increased mortality. In human sepsis, glucocorticoid treatment further suppressed hepatic GR expression, which could directly predispose to worse outcomes. In conclusion, sepsis partially suppressed hepatic GR expression, which appeared crucial to upregulate free cortisol/corticosterone availability. However, further sustained hepatic GR suppression evoked lethal excessive liver and systemic inflammation, independent of systemic cortisol/corticosterone availability.

PubMed Disclaimer

Publication types

LinkOut - more resources