Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul;146(9):1089-1100.
doi: 10.1017/S0950268818000973. Epub 2018 May 23.

The effect of transportation and lairage on faecal shedding and carcass contamination with Escherichia coli O157 and O26 in very young calves in New Zealand

Affiliations

The effect of transportation and lairage on faecal shedding and carcass contamination with Escherichia coli O157 and O26 in very young calves in New Zealand

P Jaros et al. Epidemiol Infect. 2018 Jul.

Abstract

The effect of transportation and lairage on the faecal shedding and post-slaughter contamination of carcasses with Escherichia coli O157 and O26 in young calves (4-7-day-old) was assessed in a cohort study at a regional calf-processing plant in the North Island of New Zealand, following 60 calves as cohorts from six dairy farms to slaughter. Multiple samples from each animal at pre-slaughter (recto-anal mucosal swab) and carcass at post-slaughter (sponge swab) were collected and screened using real-time PCR and culture isolation methods for the presence of E. coli O157 and O26 (Shiga toxin-producing E. coli (STEC) and non-STEC). Genotype analysis of E. coli O157 and O26 isolates provided little evidence of faecal-oral transmission of infection between calves during transportation and lairage. Increased cross-contamination of hides and carcasses with E. coli O157 and O26 between co-transported calves was confirmed at pre-hide removal and post-evisceration stages but not at pre-boning (at the end of dressing prior to chilling), indicating that good hygiene practices and application of an approved intervention effectively controlled carcass contamination. This study was the first of its kind to assess the impact of transportation and lairage on the faecal carriage and post-harvest contamination of carcasses with E. coli O157 and O26 in very young calves.

Keywords: Shiga-like toxin-producing E. coli; calves; lairage; transport.

PubMed Disclaimer

Conflict of interest statement

None.

Figures

Fig. 1.
Fig. 1.
Diversity of PFGE profiles of Escherichia coli O157 isolates (n = 56) recovered from different samples collected from 60 calves at pre-slaughter (RAMS: on-farm and on-plant) and post-slaughter (swab: hide, pre- and post-intervention). Only samples from animals with one or more recovered isolates are shown (each row), with split cells representing two characteristically different PFGE profiles of isolates, coloured by farm of origin. Black cells represent PFGE profiles prevalent on high-prevalence farms on study day, dark grey on low-prevalence farms and pale grey on neither low- or high-prevalence farms included in the study and therefore likely of different origin. Numbers in cells represent assigned PFGE cluster numbers and * identifies STEC isolates (see Supplementary Figure S1).
Fig. 2.
Fig. 2.
Diversity of PFGE profiles of Escherichia coli O26 isolates (n = 115) recovered from different samples collected from 60 calves at pre-slaughter (RAMS: on-farm and on-plant) and post-slaughter (swabs: hide, pre- and post-intervention). Only samples from animals with one or more recovered isolates are shown (each row), with split cells representing up to three characteristically different PFGE profiles of isolates, coloured by farm of origin. Black cells represent PFGE profiles prevalent on high-prevalence farms on study day, dark grey on low-prevalence farms and pale grey on neither low- or high-prevalence farms included in the study and therefore likely of different origin. Numbers in cells represent assigned PFGE cluster numbers and * identifies STEC isolates (see Supplementary Figure S2).

Similar articles

Cited by

References

    1. Moxley RA and Acuff GR (2014) Peri- and postharvest factors in the control of Shiga toxin-producing Escherichia coli in beef. Microbiology Spectrum 2(6). doi: 10.1128/microbiolspec.EHEC-0017-2013. - PubMed
    1. Johnson KE, Thorpe CM and Sears CL (2006) The emerging clinical importance of non-O157 Shiga toxin-producing Escherichia coli. Clinical Infectious Diseases 43(12), 1587–1595. - PubMed
    1. Gould LH, et al. (2009) Hemolytic uremic syndrome and death in persons with Escherichia coli O157:H7 infection, foodborne diseases active surveillance network sites, 2000–2006. Clinical Infectious Diseases 49(10), 1480–1485. - PubMed
    1. Karmali MA, Gannon V and Sargeant JM (2010) Verocytotoxin-producing Escherichia coli (VTEC). Veterinary Microbiology 140(3–4), 360–370. - PubMed
    1. Bell B, et al. (1994) A multistate outbreak of Escherichia coli O157:H7 – associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. Journal of the American Medical Association 272(17), 1349–1353. - PubMed

Publication types