Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jul 1;42(4):527-541.
doi: 10.1093/femsre/fuy024.

Typhoidal Salmonella serovars: ecological opportunity and the evolution of a new pathovar

Affiliations
Review

Typhoidal Salmonella serovars: ecological opportunity and the evolution of a new pathovar

Hirotaka Hiyoshi et al. FEMS Microbiol Rev. .

Abstract

Typhoid and paratyphoid fever are severe systemic infections caused by human-adapted typhoidal Salmonella serovars that are indistinguishable in their clinical presentation, but differ from human gastroenteritis caused by zoonotic non-typhoidal Salmonella serovars. Typhoidal Salmonella serovars evolved from ancestral gastrointestinal pathogens through genetic changes that supported a change in pathogen ecology. Typhoidal Salmonella serovars share virulence properties that were acquired through convergent evolution and therefore this group is not defined by the presence of shared virulence genes that are absent from non-typhoidal Salmonella serovars. One feature distinguishing typhoidal Salmonella serovars from gastrointestinal pathogens is their ability to avert the respiratory burst of neutrophils. Furthermore, typhoidal Salmonella serovars possess several mechanisms to moderate intestinal inflammation, which are absent from non-typhoidal Salmonella serovars. Collectively, these shared virulence mechanisms enable typhoidal Salmonella serovars to breach an intact mucosal barrier and reach the gall bladder, a new ecological niche that is important because chronic gall bladder carriage promotes disease transmission. Thus, the morbidity and mortality resulting from the severe systemic infection that enables typhoidal Salmonella serovars to reach the gall bladder is coupled to their capacity for infectious transmission, which is the principal driving force of natural selection directing the emergence of this pathovar.

PubMed Disclaimer

LinkOut - more resources