Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 May 23;17(1):121.
doi: 10.1186/s12944-018-0774-9.

Detection technologies and metabolic profiling of bile acids: a comprehensive review

Affiliations
Review

Detection technologies and metabolic profiling of bile acids: a comprehensive review

Yanan Liu et al. Lipids Health Dis. .

Abstract

Bile acids (BAs) are important regulatory factors of life activities, which are involved in the regulation of glucose, lipid and energy metabolisms, and closely associated with intestinal hormones, microbiotas and energy balance. BAs abnormalities easily lead to inflammation and metabolic diseases, in turn, the progress of diseases could influence characteristics of BAs. Therefore, accurate detection of BAs contents is of great significance to disease prevention, diagnosis and treatment. At present, the most widely used enzymatic method in clinical practice is applicable to the detection of total bile acid (TBA). In laboratory research, different types of BAs can be accurately separated and quantified by liquid chromatography-mass spectrometry (LC-MS). The metabolic profiling of BAs based on detection technologies can completely and accurately monitor their types and contents, playing a crucial role in disease prevention, diagnosis and treatment. We herein reviewed the main detection technologies of BAs and the application of metabolic profiling in related diseases in recent years.

Keywords: Bile acids; Detection technologies; Liquid chromatography-mass spectrometry; Metabolic disease; Metabolic profiling.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Synthesis and metabolism of common bile acids in human. Two major biosynthetic pathways of bile acids are shown. The classic pathway accounts for over 90% of total bile acids in human. Cholesterol is converted to 7α-hydroxycholesterol by rate-limiting enzyme CYP7A1. Then 7α-hydroxycholesterol is converted to 7a-hydroxy-4-cholesten-3-one (C4) by HSD3B7. Under CYP8B1 and CYP27A1, C4 is converted to CA, and without CYP8B1, C4 is eventually converted to CDCA. In the alternative pathway, cholesterol is first converted to 27-hydroxycholesterol by CYP27A1, and then converted to 3β, 7α-dihydroxy-5-cholestenoic acid by CYP7B1. 3β, 7α-dihydroxy-5-cholestenoic acid is eventually converted to CDCA through a series of reactions. In intestine, CA and CDCA are converted to DCA and LCA through microbiota. About 95% of bile acids are reabsorbed in the intestine and transported back to the liver. This is called the enterohepatic circulation of bile acids. About 5% of the BAs pool is excreted with feces in a day
Fig. 2
Fig. 2
Chemical structure monomer, glycine and taurine conjugates, and sulfated compound of common bile acids [, , , , –103]

Similar articles

Cited by

References

    1. Li T, Apte U. Bile acid metabolism and signaling in cholestasis, inflammation, and Cancer. Adv Pharmacol. 2015;74:263–302. doi: 10.1016/bs.apha.2015.04.003. - DOI - PMC - PubMed
    1. Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov. 2008;7:678–693. doi: 10.1038/nrd2619. - DOI - PubMed
    1. Duboc H, Rajca S, Rainteau D, Benarous D, Maubert M, Quervain E, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013;62:531–539. doi: 10.1136/gutjnl-2012-302578. - DOI - PubMed
    1. Jones ML, Martoni CJ, Ganopolsky JG, Labbe A, Prakash S. The human microbiome and bile acid metabolism: dysbiosis, dysmetabolism, disease and intervention. Expert Opin Biol Ther. 2014;14:467–482. doi: 10.1517/14712598.2014.880420. - DOI - PubMed
    1. Brouwers L, Koster MP, Page-Christiaens GC, Kemperman H, Boon J, Evers IM, et al. Intrahepatic cholestasis of pregnancy: maternal and fetal outcomes associated with elevated bile acid levels. Am J Obstet Gynecol. 2015;212:100–101. doi: 10.1016/j.ajog.2014.07.026. - DOI - PubMed

MeSH terms

Substances