Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May 23;11(1):310.
doi: 10.1186/s13071-018-2887-4.

Culex flavivirus infection in a Culex pipiens mosquito colony and its effects on vector competence for Rift Valley fever phlebovirus

Affiliations

Culex flavivirus infection in a Culex pipiens mosquito colony and its effects on vector competence for Rift Valley fever phlebovirus

Sandra Talavera et al. Parasit Vectors. .

Abstract

Background: Rift Valley fever is a mosquito-borne zoonotic disease that affects domestic ruminants and humans. Culex flavivirus is an insect-specific flavivirus that naturally exists in field mosquito populations. The influence of Culex flavivirus on Rift Valley fever phlebovirus (RVFV) vector competence of Culex pipiens has not been investigated.

Methods: Culex flavivirus infection in a Cx. pipiens colony was studied by Culex flavivirus oral feeding and intrathoracical inoculation. Similarly, vector competence of Cx. pipiens infected with Culex flavivirus was evaluated for RVFV. Infection, dissemination, transmission rates and transmission efficiency of Culex flavivirus-infected and non-infected Cx. pipiens artificially fed with RVFV infected blood were assessed.

Results: Culex flavivirus was able to infect Cx. pipiens after intrathoracically inoculation in Cx. pipiens mosquitos but not after Culex flavivirus oral feeding. Culex flavivirus did not affect RVFV infection, dissemination and transmission in Cx. pipiens mosquitoes. RVFV could be detected from saliva of both the Culex flavivirus-positive and negative Cx. pipiens females without significant differences. Moreover, RVFV did not interfere with the Culex flavivirus infection in Cx. pipiens mosquitoes.

Conclusions: Culex flavivirus infected and non-infected Cx. pipiens transmit RVFV. Culex flavivirus existing in field-collected Cx. pipiens populations does not affect their vector competence for RVFV. Culex flavivirus may not be an efficient tool for RVFV control in mosquitoes.

Keywords: Culex flavivirus; Culex pipiens; Rift Valley fever phlebovirus; Transmission; Vector competence.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
CxFV replication kinetics in Cx. pipiens oral infection. Cx. pipiens mosquitoes were not susceptible to CxFV infection following oral exposure. Columns show infection percentages and the line represents the Ct-values obtained by RT-qPCR. Abbreviation: dpe, days post-exposure
Fig. 2
Fig. 2
CxFV replication kinetics in Cx. pipiens intrathoracilally inoculated. Cx. pipiens mosquitoes were susceptible to CxFV infection after intrathoracic inoculation. Columns show infection percentages and the line represents the Ct-values obtained by RT-qPCR. Abbreviation: dpi, days post-inoculation
Fig. 3
Fig. 3
CxFV replication kinetics in co-infection with RVFV in Cx. pipiens. CxFV persisted after 21 dpi and was not influenced by RVFV exposure. Columns show infection percentages and the line represents the Ct-values obtained by RT-qPCR
Fig. 4
Fig. 4
RVFV Ct-values in female mosquito bodies and legs infected and non-infected with CxFV. RVFV loads in female mosquito bodies and legs/wings were not affected by CxFV infection

Similar articles

Cited by

References

    1. Hoshino K, Isawa H, Tsuda Y, Yano K, Sasaki T, Yuda M, et al. Genetic characterization of a new insect flavivirus isolated from Culex pipiens mosquito in Japan. Virology. 2007;359:405–414. doi: 10.1016/j.virol.2006.09.039. - DOI - PubMed
    1. Moureau G, Ninove L, Izri A, Cook S, de Lamballerie X, Charrel RN. Flavivirus RNA in phlebotomine sandflies. Vector Borne Zoonotic Dis. 2010;10:195–197. doi: 10.1089/vbz.2008.0216. - DOI - PMC - PubMed
    1. Sánchez-Seco MP, Vázquez A, Collao X, Hernández L, Aranda C, Ruiz S, et al. Surveillance of arboviruses in Spanish wetlands: detection of new flavi- and phleboviruses. Vector Borne Zoonotic Dis. 2010;10:203–206. doi: 10.1089/vbz.2008.0188. - DOI - PubMed
    1. Lutomiah JJ, Mwandawiro C, Magambo J, Sang RC. Infection and vertical transmission of Kamiti river virus in laboratory bred Aedes aegypti mosquitoes. J Insect Sci. 2007;7:1–7. doi: 10.1673/031.007.5501. - DOI - PMC - PubMed
    1. Sang RC, Gichogo A, Gachoya J, Dunster MD, Ofula V, Hunt AR, et al. Isolation of a new flavivirus related to cell fusing agent virus (CFAV) from field-collected flood-water Aedes mosquitoes sampled from a dambo in central Kenya. Arch Virol. 2003;148:1085–1093. doi: 10.1007/s00705-003-0018-8. - DOI - PubMed

Publication types

LinkOut - more resources