Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018:81:1-13.
doi: 10.1159/000485576. Epub 2018 Apr 6.

New Imaging Modalities in Otology

Review

New Imaging Modalities in Otology

Manohar Bance et al. Adv Otorhinolaryngol. 2018.

Abstract

Despite steady improvements in cross-sectional imaging of the ear, current technologies still have limitations in terms of resolution, diagnosis, functional assessment and safety. In this chapter, state-of-the-art imaging techniques in current clinical practice are presented including cone-beam computerized tomography, non-echo planar imaging magnetic resonance imaging, imaging for labyrinthine hydrops and imaging of the central auditory pathways. Potential future imaging modalities are also presented, including optical coherence tomography (OCT) and high-frequency ultrasound (HFUS) of the ear. These experimental modalities offer new opportunities for the assessment of ear structure and function. For example, middle ear structures can be visualized through the tympanic membrane, basilar membrane vibrations can be assessed through the round window and the passage of cochlear implants can be assessed in decalcified cochlear. Functional assessment of the middle ear using Doppler techniques are also discussed, including measurement of tympanic membrane and middle ear vibration amplitudes, visualization of dynamic changes, such as tensor tympani movements and movement of the tympanic membrane with breathing. These new modalities currently have limitations that preclude mainstream clinical use. For example, OCT is limited by the optical scattering of the thickened tympanic membrane and HFUS needs a coupling medium such as gel or fluid from the transducer to the imaged structure although it can visualize through thicker tissues. Nevertheless, further development of these novel techniques may provide an enhanced ability to assess the ear in conjunction with current technologies.

PubMed Disclaimer