Beyond degree and betweenness centrality: Alternative topological measures to predict viral targets
- PMID: 29795705
- PMCID: PMC5967884
- DOI: 10.1371/journal.pone.0197595
Beyond degree and betweenness centrality: Alternative topological measures to predict viral targets
Abstract
The availability of large-scale screens of host-virus interaction interfaces enabled the topological analysis of viral protein targets of the host. In particular, host proteins that bind viral proteins are generally hubs and proteins with high betweenness centrality. Recently, other topological measures were introduced that a virus may tap to infect a host cell. Utilizing experimentally determined sets of human protein targets from Herpes, Hepatitis, HIV and Influenza, we pooled molecular interactions between proteins from different pathway databases. Apart from a protein's degree and betweenness centrality, we considered a protein's pathway participation, ability to topologically control a network and protein PageRank index. In particular, we found that proteins with increasing values of such measures tend to accumulate viral targets and distinguish viral targets from non-targets. Furthermore, all such topological measures strongly correlate with the occurrence of a given protein in different pathways. Building a random forest classifier that is based on such topological measures, we found that protein PageRank index had the highest impact on the classification of viral (non-)targets while proteins' ability to topologically control an interaction network played the least important role.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures




References
-
- Uetz P, Dong YA, Zeretzke C, Atzler C, Baiker A, Berger B, et al. Herpesviral protein networks and their interaction with the human proteome. Science. 2006;311(5758):239–42. doi: 10.1126/science.1116804 - DOI - PubMed
-
- Calderwood MA, Venkatesan K, Xing L, Chase MR, Vazquez A, Holthaus AM, et al. Epstein-Barr virus and virus human protein interaction maps. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(18):7606–11. doi: 10.1073/pnas.0702332104 - DOI - PMC - PubMed
-
- Shapira SD, Gat-Viks I, Shum BO, Dricot A, de Grace MM, Wu L, et al. A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell. 2009;139(7):1255–67. doi: 10.1016/j.cell.2009.12.018 - DOI - PMC - PubMed
-
- Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, Irelan JT, et al. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell. 2008;135(1):49–60. doi: 10.1016/j.cell.2008.07.032 - DOI - PMC - PubMed
-
- Rozenblatt-Rosen O, Deo RC, Padi M, Adelmant G, Calderwood MA, Rolland T, et al. Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature. 2012;487(7408):491–5. doi: 10.1038/nature11288 - DOI - PMC - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous