Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Spring;2(1):35-56.
doi: 10.1177/074873048700200104.

The intergeniculate leaflet partially mediates effects of light on circadian rhythms

Affiliations

The intergeniculate leaflet partially mediates effects of light on circadian rhythms

G E Pickard et al. J Biol Rhythms. 1987 Spring.

Abstract

Photic signals affect circadian activity rhythms by both phasic and tonic mechanisms that modulate pacemaker phase and period. In mammals, the effects of light on circadian activity are mediated by the retina, which communicates with the suprahiasmatic nucleus (SCN) by two different anatomical routes: the retino-hypothalamic tract (RHT), originating in the retina, and the geniculo-hypothalamic tract (GHT), arising from a retino-recipient nucleus, the intergeniculate leaflet (IGL). We assessed the roles of these two afferent systems in mediating phasic and tonic effects of light on circadian activity in IGL-lesioned animals. Destruction of the IGL significantly affected phase shifts produced by brief light pulses (phasic effect) and modified the change in period (tau) of the free-running activity rhythm produced by changing the level of constant light (LL) (tonic effect). Phase advances produced by brief light pulses were decreased in amplitude while phase delays were increased in IGL-lesioned animals as compared to controls. The free-running period in constant dark (tau DD) of IGL-lesioned animals was greater than tau DD of controls, and the lengthening of tau normally produced by LL was not observed or was greatly reduced in IGL-lesioned animals. Entrainment to light-dark cycles was unaffected by the lesions, as were other aspects of the circadian activity rhythm that normally change in response to LL (e.g., activity-rest ratio, total activity, splitting). Our data support the interpretation that the IGL plays a significant role in relaying information regarding illumination intensity to the SCN.

PubMed Disclaimer

Publication types

LinkOut - more resources