Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jan-Feb;1(1):28-31.
doi: 10.1021/tx00001a005.

Identification of crotonaldehyde as a hepatic microsomal metabolite formed by alpha-hydroxylation of the carcinogen N-nitrosopyrrolidine

Affiliations

Identification of crotonaldehyde as a hepatic microsomal metabolite formed by alpha-hydroxylation of the carcinogen N-nitrosopyrrolidine

M Y Wang et al. Chem Res Toxicol. 1988 Jan-Feb.

Abstract

Crotonaldehyde (2-butenal), which reacts with DNA and is mutagenic and carcinogenic, was identified as a hepatic microsomal metabolite of the hepatocarcinogen N-nitrosopyrrolidine. Incubation mixtures of N-nitrosopyrrolidine, cofactors, and hepatic microsomes from Aroclor pretreated or control F344 rats were derivatized with (2,4-dinitrophenyl)hydrazine reagent and the resulting mixtures analyzed by high-performance liquid chromatography. Crotonaldehyde (2,4-dinitrophenyl)hydrazone was identified by its retention time in two different systems and by its ultraviolet and mass spectrum. The ratio of 4-hydroxybutyraldehyde, which has previously been identified as a metabolite of NPYR, to crotonaldehyde was 1.5-2 over a range of substrate concentrations. The approximate values of Km and nu max for crotonaldehyde were 5.8 mM and 0.6 nmol/min/mg of protein and for 4-hydroxybutyraldehyde 14.1 mM and 1.7 nmol/min/mg of protein, for substrate concentrations between 1 and 8 mM, with microsomes from Aroclor pretreated rats. The ratio of 4-hydroxybutyraldehyde to crotonaldehyde was 1.9 upon esterase-catalyzed solvolysis of alpha-acetoxy-N-nitrosopyrrolidine, a stable precursor to the initial product of N-nitrosopyrrolidine alpha-hydroxylation. These results demonstrate that crotonaldehyde is formed upon metabolic alpha-hydroxylation of N-nitrosopyrrolidine and suggest that it may be involved in N-nitrosopyrrolidine-macromolecule interactions.

PubMed Disclaimer

Publication types

LinkOut - more resources