Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1988 Jan-Feb;1(1):53-9.
doi: 10.1021/tx00001a010.

Identification of adducts formed by reaction of guanine nucleosides with malondialdehyde and structurally related aldehydes

Affiliations
Comparative Study

Identification of adducts formed by reaction of guanine nucleosides with malondialdehyde and structurally related aldehydes

A K Basu et al. Chem Res Toxicol. 1988 Jan-Feb.

Abstract

Malondialdehyde and a series of acrolein derivatives substituted in the beta-position with good leaving groups react with guanine and guanine nucleosides to form two different types of adducts. The reaction with guanosine is typical. One adduct exhibits ultraviolet absorbance maxima at 253, 319, and 348 nm and is fluorescent. Its NMR spectrum exhibits three new aromatic proton resonances derived from malondialdehyde. The mass spectrum exhibits an M + 1 at 320. The spectroscopic properties are consistent with the structure, 3-beta-D-erythro-pentofuranosyl-pyrimido[1,2-alpha]purin-10(3H)-one (PyP-ribose). The second guanosine adduct is an equal mixture of diastereomers that exhibit ultraviolet maxima at 217 and 244 nm and mirror image circular dichroism spectra. The NMR spectrum and mass spectrum (M + 1 = 392) indicate the addition of two molecules of MDA to one molecule of guanosine. Two-dimensional NMR (COSY) analysis reveals the presence of propano and enal functionalities. The spectroscopic and chemical properties suggest an oxadiazabicyclo[3.3.1]nonene structure that is confirmed by X-ray crystallography. Comparison of the deoxyguanosine adducts of malondialdehyde to those of the structurally related carbonyl compounds, methyl glyoxal and acrolein, provides a structural basis to explain the unique ability of malondialdehyde to induce frameshift mutations in bacterial mutagenesis systems.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources