Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 May 24.
doi: 10.1111/imcb.12170. Online ahead of print.

Dendritic cells and routing cargo into exosomes

Affiliations
Review

Dendritic cells and routing cargo into exosomes

Dario A Leone et al. Immunol Cell Biol. .

Abstract

Extracellular vesicles, released from cells, are important for intercellular communication. They are heterogeneous but fall into two broad categories based on origin and function: microvesicles formed by outward budding from the plasma membrane; and exosomes that originate as intraluminal vesicles in multivesicular endosomes that fuse with the plasma membrane to release them. Extracellular vesicles generally and exosomes in particular have powerful effects on specific immune responses, and recent advances highlight their potential therapeutic uses. Dendritic cells (DC) that have internalized antigen release exosomes that express MHC class II molecules loaded with antigenic peptides, co-stimulatory molecules and intact antigen. Depending on the setting, these stimulate CD4 T-cell proliferation either directly or only in the context of accessory antigen naïve DC. Here, we discuss the reasons for this; and review current knowledge about the loading of antigen, class II and other cargo into exosomes released by DC and other professional antigen-presenting cells in the context of advances in exosome biology more generally.

Keywords: Antigen presentation; MHC class II; antigen processing; dendritic cells; exosomes.

PubMed Disclaimer