Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug;105(8):1401-1411.
doi: 10.1002/ajb2.1084. Epub 2018 May 24.

The critical role of fossils in inferring deep-node phylogenetic relationships and macroevolutionary patterns in Cornales

Affiliations
Free article

The critical role of fossils in inferring deep-node phylogenetic relationships and macroevolutionary patterns in Cornales

Brian A Atkinson. Am J Bot. 2018 Aug.
Free article

Abstract

Premise of the study: The basal asterid order, Cornales, experienced a rapid radiation during the Cretaceous, which has made it difficult to elucidate the early evolution of the order using extant taxa only. Recent paleobotanical studies, however, have begun to shed light on the early diversification of Cornales. Herein, fossils are directly incorporated in phylogenetic and quantitative morphological analyses to reconstruct early cornalean evolution.

Methods: A morphological matrix of 77 fruit characters and 58 taxa (24 extinct) was assembled. Parsimony analyses including and excluding fossils were conducted. A fossil inclusive tree was time-scaled to visualize the timing of the initial cornalean radiation. Disparity analyses were utilized to infer the morphological evolution of cornaleans with drupaceous fruits.

Key results: Fossil inclusive and exclusive parsimony analyses resulted in well-resolved deep-node relationships within Cornales. Resolution in the fossil inclusive analysis is substantially higher, revealing a basal grade including Loasaceae, Hydrangeaceae, Hydrostachyaceae, Grubbiaceae, a Hironoia+Amersinia clade, and Curtisiaceae, respectively, that leads to a "core" group containing a clade comprising a Cretaceous grade leading to clade of Nyssaceae, Mastixiaceae, and Davidiaceae that is sister to a Cornaceae+Alangiaceae clade. The time-scaled tree indicates that the initial cornalean diversification occurred before 89.8 Ma. Disparity analyses suggest the morphological diversity of Cornales peaked during the Paleogene.

Conclusions: Phylogenetic analyses clearly demonstrate that novel character mosaics of Cretaceous cornaleans play a critical role in resolving deep-node relationships within Cornales. The post-Cretaceous increase of cornalean disparity is associated with a shift in morphospace occupation, which can be explained from ecological and developmental perspectives.

Keywords: Cretaceous; Paleogene; asterids; disparity; fruits; morphospace.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources