Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 13;10(23):19534-19544.
doi: 10.1021/acsami.8b06055. Epub 2018 Jun 1.

Electroactive Mg2+-Hydroxyapatite Nanostructured Networks against Drug-Resistant Bone Infection Strains

Affiliations

Electroactive Mg2+-Hydroxyapatite Nanostructured Networks against Drug-Resistant Bone Infection Strains

Nancy C Andrés et al. ACS Appl Mater Interfaces. .

Abstract

Surface colonization competition between bacteria and host cells is one of the critical factors involved in tissue/implant integration. Current biomaterials are evaluated for their ability both of withstanding favorable responses of host tissue cells and of resisting bacterial contamination. In this work, the antibacterial ability of biocompatible Mg2+-substituted nanostructured hydroxyapatite (HA) was investigated. The densities of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli strains were significantly decreased after culture in the presence of Mg-substituted HA materials in direct correlation with Mg2+-Ca2+ switch in the HA lattice. It was noticed that this decrease was accompanied by a minimal alteration of bacterial environments; therefore, the Mg2+-HA antibacterial effect was associated with the material surface topography and it electroactive behavior. It was observed that 2.23 wt % Mg2+-HA samples exhibited the best antibacterial performance; it decreased 2-fold the initial population of E. coli, P. aeruginosa, and S. aureus at the intermediate concentration (50 mg mL-1 of broth). Our results reinforce the potential of Mg-HA nanostructured materials to be used in antibacterial coatings for implantable devices and/or medicinal materials to prevent bone infection and to promote wound healing.

Keywords: antibacterial effects; hydroxyapatite; implant; infections; magnesium substitution.

PubMed Disclaimer

LinkOut - more resources