Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018:25:30.
doi: 10.1051/parasite/2018028. Epub 2018 May 28.

Analysis of Dipylidium caninum tapeworms from dogs and cats, or their respective fleas - Part 1. Molecular characterization of Dipylidium caninum: genetic analysis supporting two distinct species adapted to dogs and cats

Affiliations

Analysis of Dipylidium caninum tapeworms from dogs and cats, or their respective fleas - Part 1. Molecular characterization of Dipylidium caninum: genetic analysis supporting two distinct species adapted to dogs and cats

Michel Labuschagne et al. Parasite. 2018.

Abstract

A 28S rDNA PCR detection assay was previously developed to identify Dipylidium caninum DNA inside single fleas collected from both cats and dogs. Sequence analysis of the 28S rDNA fragment indicated two genetically distinct variations of the target region. The two genotypes, so-called "D. caninum canine genotype" and "D. caninum feline genotype", based on host origin, are further investigated and described in this paper. Restriction fragment length polymorphism (RFLP) analysis and hydrolysis probe-based genotyping assays were developed and validated for genotyping D. caninum DNA. The complete mitochondrial (mt) genome of the "feline genotype" was sequenced and compared to the D. caninum mt genome available in GenBank. The molecular characterization of D. caninum isolates collected from infected fleas, and also proglottids collected from dogs and cats, confirmed the existence of two distinct genotypes. These genotypes are related to host origin (dogs or cats), irrespective of their geographical origin, and they present a biological adaptation to their respective host, as confirmed by the comparison of biological development and host preference in another study. The genetic differences (Part 1, present paper) and biological observations (Part 2, in this journal) enabled us to suggest the existence of two distinct species within D. caninum, which will have to be clarified.

Un test PCR de détection de fragment de l’ADN ribosomal de Dipylidium caninum dans des puces récoltées sur chiens et chats a été précédemment développé. L’analyse des séquences de l’ADNr 28S a démontré la présence de deux génotypes distincts. Ces deux génotypes, appelés génotype canin et génotype félin sur la base de l’origine des isolats, sont étudiés et présentés dans cet article. L’hydrolyse de fragments d’ADN et l’analyse du polymorphisme de taille des sites de restriction ont été mise au point et validées pour génotyper l’ADN de D. caninum. Le séquençage complet du génome mitochondrial du génotype félin a été réalisé et comparé au génotype canin, dont le génome mitochondrial est disponible dans GenBank. L’analyse moléculaire des isolats de D. caninum collectés à partir de puces infectées, ou de proglottis issus de chiens et chats infestés confirme l’existence de deux génotypes distincts. Ces génotypes sont liés à l’hôte d’origine, chien ou chat, quelle que soit leur origine géographique, et ils présentent une adaptation biologique à leur hôte d’origine, comme confirmé dans une autre étude. Les différences génétiques (Partie 1, cet article) et les observations biologiques (Partie 2, dans ce journal) permettent de suggérer l’existence de deux espèces au sein de D. caninum, ce qui devra être clarifié.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Conserved insertion/deletion events (indicated by −) present in the 18S rDNA feline genotype representing feline associated D.caninum (bottom sequence) when compared to the canine genotype (second sequence from the bottom) representing the canine associated D.caninum.
Figure 2
Figure 2
Graphical representation of the complete mitochondrial genome of D.caninum R166 (MG587892) including the organization and direction of 36 genes within the mitochondrial genome.
Figure 3
Figure 3
Tree obtained after concatenation of the 12 protein-coding genes from D.caninum R166 and after those of 52 other tapeworms were subjected to multiple alignment, followed by maximum likelihood and Bayesian inference analysis (average standard deviation of split frequencies was below 0.005), using Schistosoma japonicum as the outgroup.
Figure 4
Figure 4
12S mt rDNA tree obtained for D.caninum sequences from GenBank using Schistocephalus solidus as the outgroup.

References

    1. Allsop BA, Jones A, Allsop MTEP, Newton SD, Macpherson CNL. 1987. Interspecific characterization of several taeniid cestodes by isoenzyme analysis using iselectric focusing in agarose. Parasitology, 95, 593-601. - PubMed
    1. Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69 (2), 313-319. - PubMed
    1. Beugnet F, Labuschagne M, Fourie J, Jacques G, Farkas R, Cozma V, Halos L, Hellmann K, Knaus M, Rehbein S. 2014. Occurrence of Dipylidium caninum in fleas from client-owned cats and dogs in Europe using a new PCR detection assay. Veterinary Parasitology, 205, 300-306. - PubMed
    1. Beugnet F, Labuschagne M, de Vos C, Crafford D, Fourie J. 2018. Analysis of Dipylidium caninum tapeworms from dogs and cats, or their respective fleas. Part 2. Distinct canine and feline host association with two Dipylidium caninum different genotypes. Parasite, 25, 31. - PMC - PubMed
    1. Chandra S, Forsyth M, Lawrence AL, Emery D, Šlapeta J. 2017. Cat fleas (Ctenocephalides felis) from cats and dogs in New Zealand: Molecular characterisation, presence of Rickettsia felis and Bartonella clarridgeiae and comparison with Australia. Veterinary Parasitology, 234, 25-30. - PubMed

MeSH terms