Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul:272:243-254.
doi: 10.1016/j.plantsci.2018.05.005. Epub 2018 May 9.

A lycopene β-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweetpotato

Affiliations
Free article

A lycopene β-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweetpotato

Chen Kang et al. Plant Sci. 2018 Jul.
Free article

Abstract

Lycopene β-cyclase (LCYB) is an essential enzyme that catalyzes the conversion of lycopene into α-carotene and β-carotene in carotenoid biosynthesis pathway. However, the roles and underlying mechanisms of the LCYB gene in plant responses to abiotic stresses are rarely known. This gene has not been used to improve carotenoid contents of sweetpotato, Ipomoea batatas (L.) Lam.. In the present study, a new allele of the LCYB gene, named IbLCYB2, was isolated from the storage roots of sweetpotato line HVB-3. Its overexpression significantly increased the contents of α-carotene, β-carotene, lutein, β-cryptoxanthin and zeaxanthin and enhanced the tolerance to salt, drought and oxidative stresses in the transgenic sweetpotato (cv. Shangshu 19) plants. The genes involved in carotenoid and abscisic acid (ABA) biosynthesis pathways and abiotic stress responses were up-regulated in the transgenic plants. The ABA and proline contents and superoxide dismutase (SOD) activity were significantly increased, whereas malonaldehyde (MDA) and H2O2 contents were significantly decreased in the transgenic plants under abiotic stresses. The overall results indicate that the IbLCYB2 gene enhances carotenoid contents and abiotic stress tolerance through positive regulation of carotenoid and ABA biosynthesis pathways in sweetpotato. This gene has the potential to improve carotenoid contents and abiotic stress tolerance in sweetpotato and other plants.

Keywords: Abiotic stress tolerance; Carotenoid contents; IbLCYB2; Ipomoea batatas (L.) Lam.; Sweetpotato.

PubMed Disclaimer

LinkOut - more resources