Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov 1;13(10):1378-1385.
doi: 10.1123/ijspp.2018-0050.

Effects of Athlete-Dependent Traits on Joint and System Countermovement-Jump Power

Effects of Athlete-Dependent Traits on Joint and System Countermovement-Jump Power

Kym J Williams et al. Int J Sports Physiol Perform. .

Abstract

Purpose: To establish the influence of athlete-dependent characteristics on the generation and timing of system and individual joint powers during a countermovement jump (CMJ).

Methods: Male national representative athletes from volleyball (n = 7), basketball (n = 6), and rugby (n = 7) performed a set of 3 CMJs at relative barbell loads of 0%, 10%, 20%, 30%, and 40% of absolute back-squat strength. Ground-reaction forces and joint kinematics were captured using a 16-camera motion-capture system integrated with 2 in-ground force plates. Limb lengths and cross-sectional areas were defined using 3-dimensional photonic scans. A repeated-measures analysis of variance determined the interaction between system and joint load-power profiles, whereas a multiregression analysis defined the explained variance of athlete-dependent characteristics on the load that maximized system power.

Results: System and isolated hip, knee, and ankle peak powers were maximized across a spectrum of loads between and within sports; power values were not significantly different across loads. A positive shift in the timing of hip and ankle peak powers corresponded to a significant (P < .05) positive shift in the timing of system peak power to occur closer to toe-off. An optimal 3-input combination of athlete-dependent characteristics accounted for 68% (P < .001) of the explained variance in the load that maximized system peak power.

Conclusion: The load maximizing system power is athlete-dependent, with a mixture of training and heredity-related characteristics influencing CMJ load-power profiles. The authors recommend that a combination of relative loads be individually prescribed to maximize the generation and translation of system CMJ power.

Keywords: anthropometrics; jump kinematics; kinetics; neurophysiology.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources