Binding of prostaglandin E1 to human erythrocyte membrane
- PMID: 2982399
- DOI: 10.1016/0005-2736(85)90260-3
Binding of prostaglandin E1 to human erythrocyte membrane
Abstract
Prostaglandin E1 is known to alter the structural and functional characteristics of red blood cells, yet, little is understood about the membrane receptors mediating this process. We therefore studied the binding of tritium-labeled prostaglandin E1 to the intact human erythrocyte membrane and demonstrated that the interaction is highly specific, rapid, saturable and reversible. Scatchard analysis of prostaglandin E1 binding to the membrane preparations showed the presence of two independent classes of prostaglandin E1 binding sites which differed in their affinity for the autacoid. The high-affinity class had Kd = 3.6 X 10(-9) M and the low-affinity class had Kd = 5.6 X 10(-5) M. The optimum pH for the binding of [3H]prostaglandin E1 to the erythrocyte membrane was found to be around 7.5 and maximum specific binding occurred at a concentration of 5 mM Mg2+ in the incubation mixture. [3H]Prostaglandin E1 bound to the membrane preparation could not be displaced by GTP or by its stable derivative Gpp[NH]p. However, prostaglandin E1 bound to the erythrocyte membrane preparation could be rapidly displaced by cyclic AMP. The IC50 (concentration of the nucleotide displacing 50% bound [3H]prostaglandin E1 from the membrane) was 75 nM. Other adenine nucleotides or cyclic GMP could not substitute for cyclic AMP. Unlike the right-side-out erythrocyte membrane, the inside-out membrane preparations do not bind [3H]prostaglandin E1. Treatment of right-side-out erythrocyte membrane preparation with neuraminidase markedly decreases the binding of prostaglandin E1. Incubation of the erythrocyte membrane preparation with trypsin resulted in total loss of the binding activity. These results indicate that the prostaglandin E1 binding sites located on the cell surface and sialic acid residues are required for prostaglandin E1 binding to the human erythrocytes. These results also indicated that the binding sites are glycoprotein in nature.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources