Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Mar 15;127(2):450-7.
doi: 10.1016/s0006-291x(85)80181-9.

Potential role for a guanine nucleotide regulatory protein in chemoattractant receptor mediated polyphosphoinositide metabolism, Ca++ mobilization and cellular responses by leukocytes

Potential role for a guanine nucleotide regulatory protein in chemoattractant receptor mediated polyphosphoinositide metabolism, Ca++ mobilization and cellular responses by leukocytes

M W Verghese et al. Biochem Biophys Res Commun. .

Abstract

Islet activating protein from Bordetella pertussis toxin which ribosylates certain guanine nucleotide regulatory proteins causes a marked reduction of chemoattractant-elicited responses such as chemotaxis, O2 production and cAMP elevations in human polymorphonuclear leukocytes. The toxin appears to exert its effects by preventing the rapid breakdown of phosphatidylinositol 4,5-bisphosphate induced by the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine, thereby inhibiting the increase in intracellular [Ca++] which normally follows chemoattractant stimulation. Responses of leukocytes exposed to Concanavalin A, the Ca++ ionophore A23187, or phorbol myristate acetate were not affected by the toxin. Thus the chemoattractant receptor appears to be coupled to a phosphoinositide specific phospholipase C through a guanine nucleotide regulatory protein. We propose that this complex of receptor-guanine nucleotide regulatory protein-phospholipase C may be applicable to the class of receptors which mobilize intracellular Ca++ by stimulating polyphosphoinositide breakdown.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources