Transcriptional and post-transcriptional control of PHO8 expression by PHO regulatory genes in Saccharomyces cerevisiae
- PMID: 2984552
- PMCID: PMC366700
- DOI: 10.1128/mcb.5.1.248-252.1985
Transcriptional and post-transcriptional control of PHO8 expression by PHO regulatory genes in Saccharomyces cerevisiae
Abstract
A DNA fragment bearing the PHO8 gene, which encodes repressible alkaline phosphatase of Saccharomyces cerevisiae, was cloned. Northern hybridizations with the PHO8 DNA as probe indicated that the PHO8 transcript is 1.8 kilobases in length and is more abundant in cells grown in low-phosphate medium than in high-phosphate medium. The pho9 mutant, whose phenotype is defective in the activity of repressible alkaline phosphatase, produced as much of the PHO8 transcript as did the PHO9+ cells. Hence, the PHO9 product should act at the post-transcriptional level. The pho4 mutant could not derepress the PHO8 transcript, whereas the pho80 mutant could, irrespective of the amount of Pi in the medium, as has been suggested by genetic study.
Similar articles
-
Identification of the genetic locus for the structural gene and a new regulatory gene for the synthesis of repressible alkaline phosphatase in Saccharomyces cerevisiae.Mol Cell Biol. 1982 Feb;2(2):127-37. doi: 10.1128/mcb.2.2.127-137.1982. Mol Cell Biol. 1982. PMID: 7050668 Free PMC article.
-
Specific cis-acting sequence for PHO8 expression interacts with PHO4 protein, a positive regulatory factor, in Saccharomyces cerevisiae.Mol Cell Biol. 1991 Feb;11(2):785-94. doi: 10.1128/mcb.11.2.785-794.1991. Mol Cell Biol. 1991. PMID: 1990283 Free PMC article.
-
Isolation of the positive-acting regulatory gene PHO4 from Saccharomyces cerevisiae.Gene. 1986;41(2-3):271-80. doi: 10.1016/0378-1119(86)90107-1. Gene. 1986. PMID: 3011600
-
The yeast phosphatase system.Mol Microbiol. 1990 Dec;4(12):2013-7. doi: 10.1111/j.1365-2958.1990.tb00560.x. Mol Microbiol. 1990. PMID: 1965216 Review.
-
[Regulatory circuits for gene expression: the metabolism of galactose and phosphate in Saccharomyces cerevisiae].Tanpakushitsu Kakusan Koso. 1984 Jan;29(1):14-28. Tanpakushitsu Kakusan Koso. 1984. PMID: 6369399 Review. Japanese. No abstract available.
Cited by
-
Molecular characterization of a specific p-nitrophenylphosphatase gene, PHO13, and its mapping by chromosome fragmentation in Saccharomyces cerevisiae.Mol Gen Genet. 1989 Dec;220(1):133-9. doi: 10.1007/BF00260867. Mol Gen Genet. 1989. PMID: 2558283
-
Golgi and vacuolar membrane proteins reach the vacuole in vps1 mutant yeast cells via the plasma membrane.J Cell Biol. 1995 Apr;129(1):35-46. doi: 10.1083/jcb.129.1.35. J Cell Biol. 1995. PMID: 7698993 Free PMC article.
-
Bulk RNA degradation by nitrogen starvation-induced autophagy in yeast.EMBO J. 2015 Jan 13;34(2):154-68. doi: 10.15252/embj.201489083. Epub 2014 Dec 2. EMBO J. 2015. PMID: 25468960 Free PMC article.
-
Intracellular sorting and processing of a yeast vacuolar hydrolase: proteinase A propeptide contains vacuolar targeting information.Mol Cell Biol. 1988 May;8(5):2105-16. doi: 10.1128/mcb.8.5.2105-2116.1988. Mol Cell Biol. 1988. PMID: 3290649 Free PMC article.
-
The yeast PHO5 promoter: phosphate-control elements and sequences mediating mRNA start-site selection.Proc Natl Acad Sci U S A. 1987 Mar;84(5):1340-4. doi: 10.1073/pnas.84.5.1340. Proc Natl Acad Sci U S A. 1987. PMID: 2881299 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous