Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 3;90(13):8020-8027.
doi: 10.1021/acs.analchem.8b00929. Epub 2018 Jun 15.

Comprehensive Tandem-Mass-Spectrometry Coverage of Complex Samples Enabled by Data-Set-Dependent Acquisition

Affiliations

Comprehensive Tandem-Mass-Spectrometry Coverage of Complex Samples Enabled by Data-Set-Dependent Acquisition

Corey D Broeckling et al. Anal Chem. .

Abstract

Tandem mass spectrometry (MS/MS) is an invaluable experimental tool for providing analytical data supporting the identification of small molecules and peptides in mass-spectrometry-based "omics" experiments. Data-dependent MS/MS (DDA) is a real-time MS/MS-acquisition strategy that is responsive to the signals detected in a given sample. However, in analysis of even moderately complex samples with state-of-the-art instrumentation, the speed of MS/MS acquisition is insufficient to offer comprehensive MS/MS coverage of all detected molecules. Data-independent approaches (DIA) offer greater MS/MS coverage, typically at the expense of selectivity or sensitivity. This report describes data-set-dependent MS/MS (DsDA), a novel integration of MS1-data processing and target prioritization to enable comprehensive MS/MS sampling during the initial MS-level experiment. This approach is guided by the premise that in omics experiments, individual injections are typically made as part of a larger set of samples, and feedback between data processing and data acquisition can allow approximately real-time optimization of MS/MS-acquisition parameters and nearly complete MS/MS-sampling coverage. Using a combination of R, Proteowizard, XCMS, and WRENS software, this concept was implemented on a liquid-chromatograph-coupled quadrupole time-of-flight mass spectrometer. The results illustrate comprehensive MS/MS coverage for a set of complex small-molecule samples and demonstrate a strong improvement on traditional DDA.

PubMed Disclaimer

LinkOut - more resources