Exploring patterns enriched in a dataset with contrastive principal component analysis
- PMID: 29849030
- PMCID: PMC5976774
- DOI: 10.1038/s41467-018-04608-8
Exploring patterns enriched in a dataset with contrastive principal component analysis
Abstract
Visualization and exploration of high-dimensional data is a ubiquitous challenge across disciplines. Widely used techniques such as principal component analysis (PCA) aim to identify dominant trends in one dataset. However, in many settings we have datasets collected under different conditions, e.g., a treatment and a control experiment, and we are interested in visualizing and exploring patterns that are specific to one dataset. This paper proposes a method, contrastive principal component analysis (cPCA), which identifies low-dimensional structures that are enriched in a dataset relative to comparison data. In a wide variety of experiments, we demonstrate that cPCA with a background dataset enables us to visualize dataset-specific patterns missed by PCA and other standard methods. We further provide a geometric interpretation of cPCA and strong mathematical guarantees. An implementation of cPCA is publicly available, and can be used for exploratory data analysis in many applications where PCA is currently used.
Conflict of interest statement
The authors declare no competing interests.
Figures





Comment in
-
Contrasting PCA across datasets.Nat Methods. 2018 Aug;15(8):572. doi: 10.1038/s41592-018-0093-0. Nat Methods. 2018. PMID: 30065385 No abstract available.
Similar articles
-
Identifying patterns differing between high-dimensional datasets with generalized contrastive PCA.bioRxiv [Preprint]. 2024 Aug 9:2024.08.08.607264. doi: 10.1101/2024.08.08.607264. bioRxiv. 2024. Update in: PLoS Comput Biol. 2025 Feb 07;21(2):e1012747. doi: 10.1371/journal.pcbi.1012747. PMID: 39149388 Free PMC article. Updated. Preprint.
-
Identifying patterns differing between high-dimensional datasets with generalized contrastive PCA.PLoS Comput Biol. 2025 Feb 7;21(2):e1012747. doi: 10.1371/journal.pcbi.1012747. eCollection 2025 Feb. PLoS Comput Biol. 2025. PMID: 39919147 Free PMC article.
-
Supporting Analysis of Dimensionality Reduction Results with Contrastive Learning.IEEE Trans Vis Comput Graph. 2020 Jan;26(1):45-55. doi: 10.1109/TVCG.2019.2934251. Epub 2019 Aug 19. IEEE Trans Vis Comput Graph. 2020. PMID: 31425080
-
An introduction with medical applications to functional data analysis.Stat Med. 2013 Dec 30;32(30):5222-40. doi: 10.1002/sim.5989. Epub 2013 Sep 30. Stat Med. 2013. PMID: 24114808 Review.
-
Exploratory Data Analysis.2016 Sep 10. In: MIT Critical Data, editor. Secondary Analysis of Electronic Health Records [Internet]. Cham (CH): Springer; 2016. Chapter 15. 2016 Sep 10. In: MIT Critical Data, editor. Secondary Analysis of Electronic Health Records [Internet]. Cham (CH): Springer; 2016. Chapter 15. PMID: 31314267 Free Books & Documents. Review.
Cited by
-
Contrastive Functional Connectivity Defines Neurophysiology-informed Symptom Dimensions in Major Depression.bioRxiv [Preprint]. 2024 Oct 7:2024.10.04.616707. doi: 10.1101/2024.10.04.616707. bioRxiv. 2024. Update in: Cell Rep Med. 2025 Jun 17;6(6):102151. doi: 10.1016/j.xcrm.2025.102151. PMID: 39416217 Free PMC article. Updated. Preprint.
-
Single-cell omics: experimental workflow, data analyses and applications.Sci China Life Sci. 2025 Jan;68(1):5-102. doi: 10.1007/s11427-023-2561-0. Epub 2024 Jul 23. Sci China Life Sci. 2025. PMID: 39060615 Review.
-
Putting the data before the algorithm in big data addressing personalized healthcare.NPJ Digit Med. 2019 Aug 19;2:78. doi: 10.1038/s41746-019-0157-2. eCollection 2019. NPJ Digit Med. 2019. PMID: 31453373 Free PMC article. Review.
-
Integrating single-cell data with biological variables.Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2416516122. doi: 10.1073/pnas.2416516122. Epub 2025 Apr 28. Proc Natl Acad Sci U S A. 2025. PMID: 40294274
-
Identifying behavioral links to neural dynamics of multifiber photometry recordings in a mouse social behavior network.J Neural Eng. 2024 Jun 25;21(3):10.1088/1741-2552/ad5702. doi: 10.1088/1741-2552/ad5702. J Neural Eng. 2024. PMID: 38861996 Free PMC article.
References
-
- Hotelling H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933;24:417. doi: 10.1037/h0071325. - DOI
-
- Jolliffe, I. T (ed.). Principal Component Analysis, 115–128 (Springer, New York, NY, 1986).
-
- Maaten L, Hinton G. Visualizing data using t-sne. J. Mach. Learn. Res. 2008;9:2579–2605.
-
- Cox, M. A. & Cox, T. F. Multidimensional Scaling. Handbook of Data Visualization 315–347 (Springer, Berlin, 2008).
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases