Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May;557(7707):691-695.
doi: 10.1038/s41586-018-0154-7. Epub 2018 May 30.

Magnetic edge states and coherent manipulation of graphene nanoribbons

Affiliations
Free article

Magnetic edge states and coherent manipulation of graphene nanoribbons

Michael Slota et al. Nature. 2018 May.
Free article

Erratum in

Abstract

Graphene, a single-layer network of carbon atoms, has outstanding electrical and mechanical properties 1 . Graphene ribbons with nanometre-scale widths2,3 (nanoribbons) should exhibit half-metallicity 4 and quantum confinement. Magnetic edges in graphene nanoribbons5,6 have been studied extensively from a theoretical standpoint because their coherent manipulation would be a milestone for spintronic 7 and quantum computing devices 8 . However, experimental investigations have been hampered because nanoribbon edges cannot be produced with atomic precision and the graphene terminations that have been proposed are chemically unstable 9 . Here we address both of these problems, by using molecular graphene nanoribbons functionalized with stable spin-bearing radical groups. We observe the predicted delocalized magnetic edge states and test theoretical models of the spin dynamics and spin-environment interactions. Comparison with a non-graphitized reference material enables us to clearly identify the characteristic behaviour of the radical-functionalized graphene nanoribbons. We quantify the parameters of spin-orbit coupling, define the interaction patterns and determine the spin decoherence channels. Even without any optimization, the spin coherence time is in the range of microseconds at room temperature, and we perform quantum inversion operations between edge and radical spins. Our approach provides a way of testing the theory of magnetism in graphene nanoribbons experimentally. The coherence times that we observe open up encouraging prospects for the use of magnetic nanoribbons in quantum spintronic devices.

PubMed Disclaimer

Comment in

  • Spinning on the edge of graphene.
    Luis F, Coronado E. Luis F, et al. Nature. 2018 May;557(7707):645-647. doi: 10.1038/d41586-018-05240-8. Nature. 2018. PMID: 29805174 No abstract available.

Publication types

LinkOut - more resources