Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep:174:98-106.
doi: 10.1016/j.exer.2018.05.027. Epub 2018 May 28.

A novel model of persistent retinal neovascularization for the development of sustained anti-VEGF therapies

Affiliations

A novel model of persistent retinal neovascularization for the development of sustained anti-VEGF therapies

Yong Li et al. Exp Eye Res. 2018 Sep.

Abstract

Anti-vascular endothelial growth factor (VEGF) therapies lead to a major breakthrough in treatment of neovascular retinal diseases such as age-related macular degeneration or diabetic retinopathy. Current management of these conditions require regular and frequent intravitreal injections to prevent disease recurrence once the effect of the injected drug wears off. This has led to a pressing clinical need of developing sustained release formulations or therapies with longer duration. A major drawback in developing such therapies is that the currently available animal models show spontaneous regression of vascular leakage. They therefore not only fail to recapitulate retinal vascular disease in humans, but also prevent to discern if regression is due to prolonged therapeutic effect or simply reflects spontaneous healing. Here, we described the development of a novel rabbit model of persistent retinal neovascularization (PRNV). Retinal Müller glial are essential for maintaining the integrity of the blood-retinal barrier. Intravitreal injection of DL-alpha-aminoadipic acid (DL-AAA), a selective retinal glial (Müller) cell toxin, results in persistent vascular leakage for up to 48 weeks. We demonstrated that VEGF concentrations were significantly increased in vitreous suggesting VEGF plays a significant role in mediating the leakage observed. Intravitreal administration of anti-VEGF drugs (e.g. bevacizumab, ranibizumab and aflibercept) suppresses vascular leakage for 8-10 weeks, before recurrence of leakage to pre-treatment levels. All three anti-VEGF drugs are very effective in re-ducing angiographic leakage in PRNV model, and aflibercept demonstrated a longer duration of action compared with the others, reminiscent of what is observed with these drugs in human in the clinical setting. Therefore, this model provides a unique tool to evaluate novel anti-VEGF formulations and therapies with respect to their duration of action in comparison to the currently used drugs.

Keywords: Anti-VEGF therapy; DL-Alpha-aminoadipic acid; Müller cells; Persistence of leakage; Rabbit model; Retinal neovascularization.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms