Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 27;10(25):21601-21611.
doi: 10.1021/acsami.8b03537. Epub 2018 Jun 13.

Highly Conductive, Photolithographically Patternable Ionogels for Flexible and Stretchable Electrochemical Devices

Affiliations
Free article

Highly Conductive, Photolithographically Patternable Ionogels for Flexible and Stretchable Electrochemical Devices

Yong Zhong et al. ACS Appl Mater Interfaces. .
Free article

Abstract

An ionic conducting membrane is an essential part in various electrochemical devices including ionic actuators. To miniaturize these devices, micropatterns of ionic conducting membrane are desired. Here, we present a novel type of ionogel that can be patterned using standard photolithography and soft imprinting lithography. The ionogel is prepared in situ by UV-initiated free-radical polymerization of thiol acrylate precursors in the presence of ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. The resultant ionogel is very flexible with a low Young's modulus (as low as 0.23 MPa) and shows a very high ionic conductivity (up to 2.4 × 10-3 S/cm with 75 wt % ionic liquid incorporated) and has a reactive surface due to the excess thiol groups. Micropatterns of ionogel are obtained by using the thiol acrylate ionogel solution as an ionic conducting photoresist with standard photolithography. Water, a solvent immiscible with ionic liquid, is used as the photoresist developer to avoid complete removal of ionic liquid from thin micropatterns of the ionogel. By taking advantage of the reactive surface of ionogels and the photopatternability, ionogels with complex three-dimensional microstructure are developed. The surface of the ionogels can also be easily patterned using UV-assisted soft imprinting lithography. This new type of ionogels may open up for building high-performance flexible electrochemical microdevices.

Keywords: electrochemical devices; ionogel; micropatterning; photolithography; reactive surface; thiol acrylate photochemistry.

PubMed Disclaimer