Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul:104:26-32.
doi: 10.1016/j.ejrad.2018.04.020. Epub 2018 Apr 22.

18F-FDG PET/CT in immunocompetent patients with primary central nervous system lymphoma: Differentiation from glioblastoma and correlation with DWI

Affiliations

18F-FDG PET/CT in immunocompetent patients with primary central nervous system lymphoma: Differentiation from glioblastoma and correlation with DWI

Weiyan Zhou et al. Eur J Radiol. 2018 Jul.

Abstract

Objectives: 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) is useful for the detection of cancerous lesions, and FDG uptake is related to the apparent diffusion coefficient (ADC) derived from diffusion-weighted imaging (DWI) of extracranial tumors. The purpose of our study was to investigate the ability of FDG PET/CT in distinguishing primary central nervous system lymphoma (PCNSL) from glioblastoma multiforme (GBM) and to explore the relationship between 18F-FDG uptake and the ADC in patients with PCNSL.

Methods: We reviewed 92 patients (40 with PCNSL and 52 with GBM) who underwent FDG PET/CT scans at disease onset. The maximum standardized uptake value (SUVmax), tumor to normal contralateral cortex activity (T/N) ratio, SUVmean, metabolic tumor volume (MTV), and total lesion glycolysis (TLG) of tumor lesions were calculated. Receiver operating characteristic (ROC) curves were generated to determine the diagnostic performance for FDG PET-related parameters to differentiate PCNSL from GBM. Twenty-eight patients with PCNSL (with 34 lesions) also underwent diffusion-weighted imaging. Pearson's correlation analysis was used to assess the relation between SUV- and ADC-derived parameters.

Results: The SUVmax, T/N ratio, SUVmean, and TLG values were significantly higher in PCNSL than in GBM. Comparative ROC analysis indicated that the SUVmax had a greater area under the curve (AUC) of 0.910 than the T/N ratio (0.905, P = .85), SUVmean (0.836, P = .0006), or TLG (0.641, P < 0.0001). The T/N ratio had the highest specificity (94.23%) for differentiating PCNSL from GBM, while the SUVmax had the most optimal sensitivity (92.31%). Further combined analysis of the indices did not significantly improve the AUC. Moderate inverse correlations between the SUVmax, SUVmean, TLG, and the ADC ratio (rADC) were found in PCNSLs (r = -0.526, P = .002; r = -0.504, P = .004; and r = -0.483, P = .006; respectively).

Conclusions: The SUVmax and T/N ratio may be reliable measures for differentiating PCNSLs from GBMs. Additionally, FDG metabolism indices were inversely proportional to the rADCs of PCNSL lesions.

Keywords: Diffusion weighted imaging; FDG; Glioblastoma multiforme; PET/CT; Primary central nervous system lymphoma.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources