Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Oct 29;30(11):529-536.
doi: 10.1093/intimm/dxy032.

Regulation and role of the transcription factor IRF5 in innate immune responses and systemic lupus erythematosus

Affiliations
Review

Regulation and role of the transcription factor IRF5 in innate immune responses and systemic lupus erythematosus

Tatsuma Ban et al. Int Immunol. .

Abstract

The transcription factor interferon regulatory factor-5 (IRF5) plays an important role in innate immune responses via the TLR-MyD88 (Toll-like receptor - myeloid differentiation primary response 88) pathway. IRF5 is also involved in the pathogenesis of the autoimmune disease systemic lupus erythematosus (SLE). Recent studies have identified new regulators, both positive and negative, which act on IRF5 activation events in the TLR-MyD88 pathway such as post-translational modifications, dimerization and nuclear translocation. A model of the causal relationship between IRF5 activation and SLE pathogenesis proposes that a loss of the negative regulation of IRF5 causes its hyperactivation, resulting in hyperproduction of type I interferons and other cytokines, and ultimately in the development of SLE. Importantly, to our knowledge, all murine models of SLE studied thus far have shown that IRF5 is required for the pathogenesis of SLE-like diseases. During the development of SLE-like diseases, IRF5 plays key roles in various cell types, including dendritic cells and B cells. It is noteworthy that the onset of SLE-like diseases can be inhibited by reducing the activity or amount of IRF5 by half. Therefore, IRF5 is an important therapeutic target of SLE, and selective suppression of its activity and expression may potentially lead to the development of new therapies.

PubMed Disclaimer

Publication types