Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct 1;6(10):5802-5814.
doi: 10.1039/c5sc01885d. Epub 2015 Jun 29.

RhI/RhIII catalyst-controlled divergent aryl/heteroaryl C-H bond functionalization of picolinamides with alkynes

Affiliations

RhI/RhIII catalyst-controlled divergent aryl/heteroaryl C-H bond functionalization of picolinamides with alkynes

Ángel Manu Martínez et al. Chem Sci. .

Abstract

The ability to establish switchable site-selectivity through catalyst control in the direct functionalization of molecules that contain distinct C-H bonds remains a demanding challenge that would enable the construction of diverse scaffolds from the same starting materials. Herein we describe the realization of this goal, namely a divergent heteroaryl/aryl C-H functionalization of aromatic picolinamide derivatives, targeting two distinct C-H sites, either at the pyridine ring or at the arene unit, to afford isoquinoline or ortho-olefinated benzylamine (or phenethylamine) derivatives. This complementary reactivity has been achieved on the basis of a RhIII/RhI switch in the catalyst, resulting in different mechanistic outcomes. Notably, a series of experimental and DFT mechanistic studies revealed important insights about the mechanism of the reaction and reasons behind the divergent regiochemical outcome.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Proposed catalyst-controlled divergent aryl/heteroaryl C–H functionalization.
Scheme 1
Scheme 1. RhIII-catalyzed pyridyl C–H functionalization, leading to the isoquinoline derivatives. Conditions: benzylamine derivative (0.15 mmol), alkyne (0.30 mmol), [RhCp*Cl2]2 (5 mol%), Cu(OAc)2 (2.0 equiv.), dioxane (0.1 M), μW, 120 °C, 1 h. aUnder conventional heating at 120 °C for 24 h.
Scheme 2
Scheme 2. RhI-catalyzed ortho-olefination of benzylamine derivatives. aThe mono-ortho-olefinated product was also isolated in 8% yield. bThe di-olefinated product was also isolated in 6% yield.
Scheme 3
Scheme 3. Rhodium-controlled divergent aryl/heteroaryl C–H functionalization in the reaction of 1 with ethyl pent-2-ynoate.
Scheme 4
Scheme 4. RhI-catalyzed ortho-olefination of 1 with 1,3-enynes.
Scheme 5
Scheme 5. RhI-catalyzed ortho-olefination of 1 with aryl-cyclohexyl-acetylenes. aUsing 5 mol% [Rh(cod)Cl]2 and 10 mol% of AgSbF6.
Scheme 6
Scheme 6. RhI-catalyzed ortho-olefination of phenethylamine derivatives.
Scheme 7
Scheme 7. RhIII-catalyzed pyridyl C–H functionalization leading to a 1,7-naphthyridin-8(7H)-one derivative.
Scheme 8
Scheme 8. Deprotection of the N-benzyl group and removal of the COPy directing group.
Fig. 2
Fig. 2. ORTEP view of RhIII-complex A and RhI-complex B. The hydrogen atoms have been removed for simplicity.
Scheme 9
Scheme 9. Stoichiometric studies with isolated RhIII- and RhI-picolinamide complexes.
Scheme 10
Scheme 10. H/D exchange experiments in the RhIII-promoted C–H functionalization process. aThe H/D exchange was detected using mass spectrometry in this case (the exact deuterium content could not be determined by NMR).
Scheme 11
Scheme 11. H/D exchange experiments in the RhI-promoted C–H functionalization process.
Scheme 12
Scheme 12. Simplified plausible mechanistic pathways.
Fig. 3
Fig. 3. Energy profile for the C–H functionalization pathways of 1 with diphenylacetylene from neutral model RhIII complexes in the gas phase (M06/6-311+G(d,p)(C,H,N,O),SDD (Rh)//6-31G(d)(C,H,N,O), LANL2DZ(Rh). The relative G values are in kcal mol–1 at 298 K).
Fig. 4
Fig. 4. Energy profile for the C–H functionalization pathways of 1 with diphenylacetylene from anionic model RhI complexes in the gas phase (M06/6-311+G(d,p)(C,H,N,O),SDD (Rh)//6-31G(d)(C,H,N,O), LANL2DZ(Rh). The relative G values are in kcal mol–1 at 298 K). For simplicity, the negative charge has been omitted.
Fig. 5
Fig. 5. Energy profile for the C–H activation pathways of picolinamides from anionic model RhI complexes with monocoordinated “cod” or alkyne ligands in the gas phase (M06/6-311+G(d,p)(C,H,N,O),SDD (Rh)//6-31G(d)(C,H,N,O), LANL2DZ(Rh). The relative G values are in kcal mol–1 at 298 K).
Fig. 6
Fig. 6. Molecular structures of the key transition states. The bond lengths are given in Å and the relative free energies with respect to modA and modB are indicated in parentheses (kcal mol–1).
Scheme 13
Scheme 13. Synthesis and activity of RhI-complex M.
Fig. 7
Fig. 7. Kinetic profiles of complexes B and M as catalysts in parallel dialkenylation reactions of 1 with diphenylacetylene.

Similar articles

Cited by

References

    1. Recent general reviews on C–H functionalization: . See also:

    2. Wencel-Delord J., Drçge T., Liu F., Glorius F. Chem. Soc. Rev. 2011;40:4740. - PubMed
    3. Newhouse T., Baran P. S. Angew. Chem., Int. Ed. 2011;50:3362. - PMC - PubMed
    4. Ackermann L. Chem. Rev. 2011;111:1315. - PubMed
    5. McMurray L., O'Hara F., Gaunt M. J. Chem. Soc. Rev. 2011;40:1885. - PubMed
    6. Yeung C. S., Dong V. M. Chem. Rev. 2011;111:1215. - PubMed
    7. White M. C. Science. 2012;335:807. - PubMed
    8. Engle K. M., Mei T.-S., Wasa M., Yu J.-Q. Acc. Chem. Res. 2012;45:788. - PMC - PubMed
    9. Yamaguchi J., Yamaguchi A. D., Itami K. Angew. Chem., Int. Ed. 2012;51:8960. - PubMed
    10. Neufeldt S. R., Sanford M. S. Acc. Chem. Res. 2012;45:936. - PMC - PubMed
    11. Kuhl N., Hopkinson M. N., Wencel-Delord J., Glorius F. Angew. Chem., Int. Ed. 2012;51:10236. - PubMed
    12. Chen D. Y.-K., Youn S. W. Chem.–Eur. J. 2012;18:9452. - PubMed
    13. Wencel-Delord J., Glorius F. Nat. Chem. 2013;5:369. - PubMed
    14. Ackermann L. Acc. Chem. Res. 2014;47:281. - PubMed
    15. Zhang X.-S., Chen K., Shi Z.-J. Chem. Sci. 2014;5:2146.
    16. Yu D.-G., de Azambuja F., Glorius F. Angew. Chem., Int. Ed. 2014;53:7710. - PubMed
    1. For elegant examples: . For a review on catalytic selective synthesis:

    2. Campeau L.-C., Chipper D. J., Fagnou K. J. Am. Chem. Soc. 2008;130:3266. - PubMed
    3. Schipper D. J., Campeau L.-C., Fagnou K. Tetrahedron. 2009;65:3155.
    4. Lapointe D., Markiewicz T., Whipp C. J., Toderian A., Fagnou K. J. Org. Chem. 2011;76:749. - PubMed
    5. Dooley J. D., Chidipudi S. R., Lam H. W. J. Am. Chem. Soc. 2013;135:10829. - PubMed
    6. Zhang X., Si W., Bao M., Asao N., Yamamoto Y., Jin T. Org. Lett. 2014;16:4830. - PubMed
    7. Dooley J. D., Chidipudi S. R., Lam H. W. J. Am. Chem. Soc. 2013;135:10829. - PubMed
    8. Cross W. B., Razak S., Singh K., Warner A. J. Chem.–Eur. J. 2014;20:13203. - PubMed
    9. Du W., Gu Q., Li Z., Yang D. J. Am. Chem. Soc. 2015;137:1130. - PubMed
    10. Bedford R. B., Durrant S. J., Montgomery M. Angew. Chem., Int. Ed. 2015;54 doi: 10.1002/anie.201502150. - DOI - PMC - PubMed
    11. Kang D., Hong S. Org. Lett. 2015;17:1938. - PubMed
    12. Mahatthananchai J., Dumas A. M., Bode J. W. Angew. Chem., Int. Ed. 2012;51:10954. - PubMed
    1. For reviews on Rh-catalyzed C–H functionalization:

    2. Lewis J. C., Bergman R. G., Ellman J. A. Acc. Chem. Res. 2008;41:1013. - PMC - PubMed
    3. Bouffard J., Itami K. Top. Curr. Chem. 2010;292:231. - PubMed
    4. Colby D. A., Bergman R. G., Ellman J. A. Chem. Rev. 2010;110:624. - PMC - PubMed
    5. Bouffard J., Itami K. Top. Curr. Chem. 2010;292:231. - PubMed
    6. Satoh T., Miura M. Chem.–Eur. J. 2010;16:11212. - PubMed
    7. Colby D. A., Tsai A. S., Bergman R. G., Ellman J. A. Acc. Chem. Res. 2012;45:814. - PMC - PubMed
    8. Song G., Wang F., Li X. Chem. Soc. Rev. 2012;41:3651. - PubMed
    9. Patureau F. W., Wencel-Delord J., Glorius F. Aldrichimica Acta. 2012;45:31.
    10. Kuhl N., Schröder N., Glorius F. Adv. Synth. Catal. 2014;356:1443.
    11. Ghorai D., Choudhury J. Acc. Chem. Res. 2015;48:1007. - PubMed
    12. Ye B., Cramer N. Acc. Chem. Res. 2015;48:1308. - PubMed
    1. For selected examples of RhIII-catalyzed C–H annulative coupling reactions of (hetero)arenes involving one equivalent of an alkyne:

    2. Ueura K., Satoh T., Miura M. Org. Lett. 2007;9:1407. - PubMed
    3. Li L., Brennessel W. W., Jones W. D. J. Am. Chem. Soc. 2008;130:12414. - PubMed
    4. Stuart D. R., Bertrand-Laperle M., Burgess K. M. N., Fagnou K. J. Am. Chem. Soc. 2008;130:16474. - PubMed
    5. Guimond N., Fagnou K. J. Am. Chem. Soc. 2009;131:12050. - PubMed
    6. Fukutani T., Umeda N., Hirano K., Satoh T., Miura M. Chem. Commun. 2009:5141. - PubMed
    7. Stuart D. R., Alsabeh P., Kuhn M., Fagnou K. J. Am. Chem. Soc. 2010;132:18326. - PubMed
    8. Rakshit S., Patureau F. W., Glorius F. J. Am. Chem. Soc. 2010;132:9585. - PubMed
    9. Guimond N., Gouliaras C., Fagnou K. J. Am. Chem. Soc. 2010;132:6908. - PubMed
    10. Hyster T. K., Rovis T. J. Am. Chem. Soc. 2010;132:10565. - PMC - PubMed
    11. Morimoto K., Hirano K., Satoh T., Miura M. Org. Lett. 2010;12:2068. - PubMed
    12. Chen J., Song G., Pan C.-L., Li X. Org. Lett. 2010;12:5426. - PubMed
    13. Too P. C., Wang Y.-F., Chiba S. Org. Lett. 2010;12:5688. - PubMed
    14. Muralirajan K., Parthasarathy K., Cheng C.-H. Angew. Chem., Int. Ed. 2011;50:4169. - PubMed
    15. Patureau F. W., Besset T., Kuhl N., Glorius F. J. Am. Chem. Soc. 2011;133:2154. - PubMed
    16. Guimond N., Gorelsky S. I., Fagnou K. J. Am. Chem. Soc. 2011;133:6449. - PubMed
    17. Wang Y.-F., Toh K. K., Lee J.-Y., Chiba S. Angew. Chem., Int. Ed. 2011;50:5927. - PubMed
    18. Huestis M. P., Chan L., Stuart D. R., Fagnou K. Angew. Chem., Int. Ed. 2011;50:1338. - PubMed
    19. Zhang X., Chen D., Zhao M., Zhao J., Jia A., Li X. Adv. Synth. Catal. 2011;353:719.
    20. Wang H., Grohmann C., Nimphius C., Glorius F. J. Am. Chem. Soc. 2012;134:19592. - PubMed
    21. Jayakumar J., Parthasarathy K., Cheng C.-H. Angew. Chem., Int. Ed. 2012;51:197. - PubMed
    22. Pham M. V., Ye B., Cramer N. Angew. Chem., Int. Ed. 2012;51:10610. - PubMed
    23. Xu X., Liu Y., Park C.-M. Angew. Chem., Int. Ed. 2012;51:9372. - PubMed
    24. Li B.-J., Wang H.-Y., Zhu Q.-L., Shi Z.-J. Angew. Chem., Int. Ed. 2012;51:3948. - PubMed
    25. Tan X., Liu B., Li X., Li B., Xu S., Song H., Wang B. J. Am. Chem. Soc. 2012;134:16163. - PubMed
    26. Dong W., Wang L., Parthasarathy K., Pan F., Bolm C. Angew. Chem., Int. Ed. 2013;52:11573. - PubMed
    27. Liu B., Song C., Sun C., Zhou S., Zhu J. J. Am. Chem. Soc. 2013;135:16625. - PubMed
    28. Zhao D., Shi Z., Glorius F. Angew. Chem., Int. Ed. 2013;52:12426. - PubMed
    29. Wang C., Sun H., Fang Y., Huang Y. Angew. Chem., Int. Ed. 2013;52:5795. - PubMed
    30. Wang C., Huang Y. Org. Lett. 2013;15:5294. - PubMed
    31. Kim D.-S., Park J.-W., Jun C.-H. Adv. Synth. Catal. 2013;355:2667.
    32. Zheng L., Hua R. Chem.–Eur. J. 2014;20:2352. - PubMed
    33. Li X. G., Liu K., Zou G., Liu P. N. Adv. Synth. Catal. 2014;356:1496.
    34. Muralirajana K., Cheng C.-H. Adv. Synth. Catal. 2014;356:1571.
    35. Hoshino Y., Shibata Y., Tanaka K. Adv. Synth. Catal. 2014;356:1577.
    36. Fukui M., Hoshino Y., Satoh T., Miura M., Tanaka K. Adv. Synth. Catal. 2014;356:1638.
    37. Xing L., Fan Z., Hou C., Yong G., Zhang A. Adv. Synth. Catal. 2014;356:972.
    38. Jayakumar J., Parthasarathy K., Chen Y.-H., Lee T.-H., Chuang S.-C., Cheng C.-H. Angew. Chem., Int. Ed. 2014;53:9889. - PubMed
    39. Nobushige K., Hirano K., Satoh T., Miura M. Org. Lett. 2014;16:1188. - PubMed
    40. Iitsuka T., Hirano K., Satoh T., Miura M. Chem.–Eur. J. 2014;20:385. - PubMed
    41. Yu D.-G., de Azambuja F., Gensch T., Daniliuc C. G., Glorius F. Angew. Chem., Int. Ed. 2014;53:9650. - PubMed
    42. Li D. Y., Chen H. J., Liu P. N. Org. Lett. 2014;16:6176. - PubMed
    43. Seoane A., Casanova N., Quiñones N., Mascareñas J. L., Gulías M. J. Am. Chem. Soc. 2014;136:834. - PubMed
    44. Jia J., Shi J., Zhou J., Liu X., Song Y., Xu H. E., Yi W. Chem. Commun. 2015;51:2925. - PubMed
    45. Fan Z., Song S., Li W., Geng K., Xu Y., Miao Z.-H., Zhang A. Org. Lett. 2015;17:310. - PubMed
    46. Yang X.-F., Hu X.-H., Loh T.-P. Org. Lett. 2015;17:1481. - PubMed
    47. Ghorai D., Choudhury J. ACS Catal. 2015;5:2692.
    48. Duttwyler S., Lu C., Rheingold A. L., Bergman R. G., Ellman J. A. J. Am. Chem. Soc. 2012;134:4064. - PMC - PubMed
    49. Azpíroz R., Di Giuseppe A., Castarlenas R., Pérez-Torrente J. J., Oro L. A. Chem.–Eur. J. 2013;19:3812. - PubMed
    50. Zhang Q.-R., Huang J.-R., Zhang W., Dong L. Org. Lett. 2014;16:1684. - PubMed
    51. Luo C.-Z., Jayakumar J., Gandeepan P., Wu Y.-C., Cheng C.-H. Org. Lett. 2015;17:924. - PubMed
    52. Zhao S., Yu R., Chen W., Liu M., Wu H. Org. Lett. 2015;17:2828. - PubMed
    53. Yang Y., Zhou M.-B. o., Ouyang X.-H., Pi R., Song R.-J., Li J.-H. Angew. Chem., Int. Ed. 2015;54:6595. - PubMed
    54. Zheng J., Wang S.-B., Zheng C., You S.-L. J. Am. Chem. Soc. 2015;137:4880. - PubMed
    55. Dateer R. B., Chang S. J. Am. Chem. Soc. 2015;137:4908. - PubMed
    56. Qiu L., Huang D., Xu G., Dai Z., Sun J. Org. Lett. 2015;17:1810. - PubMed
    57. Zhao Y., Han F., Yang L., Xia C. Org. Lett. 2015;17:1477. - PubMed
    58. Qi Z., Yu S., Li X. J. Org. Chem. 2015;80:3471. - PubMed
    59. Chen S., Bergman R. G., Ellman J. A. Org. Lett. 2015;17:2567. - PMC - PubMed
    60. Litsuka T., Hirano K., Satoh T., Miura M. J. Org. Chem. 2015;80:2804. - PubMed
    61. Jia J., Shi J., Zhou J., Liu X., Song Y., Xu H. E., Yi W. Chem. Commun. 2015;51:2925. - PubMed
    62. Huang J.-R., Qin L., Zhu Y.-Q., Song Q., Dong L. Chem. Commun. 2015;51:2844. - PubMed
    1. For RhIII-catalyzed aromatic homologation via C–H coupling with two alkyne molecules: . See also: . For an example involving an initial transmetalation from a boronic acid derivative:

    2. Umeda N., Tsurugi H., Satoh T., Miura M. Angew. Chem., Int. Ed. 2008;47:4019. - PubMed
    3. Song G., Chen D., Pan C.-L., Crabtree R. H., Li X. J. Org. Chem. 2010;75:7487. - PubMed
    4. Mochida S., Shimizu M., Hirano K., Satoh T., Miura M. Chem.–Asian J. 2010;5:847. - PubMed
    5. Umeda N., Hirano K., Satoh T., Shibata N., Sato H., Miura M. J. Org. Chem. 2011;76:13. - PubMed
    6. Song G., Gong X., Li X. J. Org. Chem. 2011;76:7583. - PubMed
    7. Fukutani T., Hirano K., Satoh T., Miura M. J. Org. Chem. 2011;76:2867. - PubMed
    8. Shi Z., Tang C., Jiao N. Adv. Synth. Catal. 2012;354:2695.
    9. Li B., Ma J., Liang Y., Wang N., Xu S., Song H., Wang B. Eur. J. Org. Chem. 2013:1950.
    10. Zhao D., Nimphius C., Lindale M., Glorius F. Org. Lett. 2013;15:4504. - PubMed
    11. Nobushige K., Hirano K., Satoh T., Miura M. Org. Lett. 2014;16:1188. - PubMed
    12. Pham M. V., Cramer N. Angew. Chem., Int. Ed. 2014;53:3484. - PubMed
    13. Liu B., Hu F., Shi B.-F. Adv. Synth. Catal. 2014;356:2688.
    14. Wang H., Wang Y., Yang H., Tan C., Jiang Y., Zhao Y., Fu H. Adv. Synth. Catal. 2015;357:489.
    15. Wang J., Qin D., Lan J., Cheng Y., Zhang S., Guo Q., Wu J., Wu D., You J. Chem. Commun. 2015;51:6337. - PubMed
    16. Wang H., Wang Y., Yang H., Tan C., Jiang Y., Zhao Y., Fu H. Adv. Synth. Catal. 2015;357:489.
    17. Fukutani T., Hirano K., Satoh T., Miura M. Org. Lett. 2009;11:5198. - PubMed