Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Dec 1;6(12):7163-7168.
doi: 10.1039/c5sc02100f. Epub 2015 Sep 14.

The first chiral diene-based metal-organic frameworks for highly enantioselective carbon-carbon bond formation reactions

Affiliations

The first chiral diene-based metal-organic frameworks for highly enantioselective carbon-carbon bond formation reactions

Takahiro Sawano et al. Chem Sci. .

Abstract

We have designed the first chiral diene-based metal-organic framework (MOF), E2-MOF, and postsynthetically metalated E2-MOF with Rh(i) complexes to afford highly active and enantioselective single-site solid catalysts for C-C bond formation reactions. Treatment of E2-MOF with [RhCl(C2H4)2]2 led to a highly enantioselective catalyst for 1,4-additions of arylboronic acids to α,β-unsaturated ketones, whereas treatment of E2-MOF with Rh(acac)(C2H4)2 afforded a highly efficient catalyst for the asymmetric 1,2-additions of arylboronic acids to aldimines. Interestingly, E2-MOF·Rh(acac) showed higher activity and enantioselectivity than the homogeneous control catalyst, likely due to the formation of a true single-site catalyst in the MOF. E2-MOF·Rh(acac) was also successfully recycled and reused at least seven times without loss of yield and enantioselectivity.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Postsynthetically Rh-metalated E2-MOF catalysts for asymmetric reactions.
Scheme 1
Scheme 1. Synthesis of LH2. (i) oxalyl chloride, CH2Cl2; (ii) TEA, THF, 57% yield over 2 steps; (iii) NaOH, THF, EtOH, 77% yield; (iv) ZrCl4, TFA, DMF, 70 °C, 5 d, 42% yield.
Fig. 2
Fig. 2. (a) PXRD patterns of pristine E2-MOF (simulated from the CIF file, black; experimental, red), and freshly prepared E2-MOF·RhCl (blue) and E2-MOF·Rh(acac) (pink). (b) PXRD patterns of pristine E2-MOF·Rh(acac) (black) and E2-MOF·Rh(acac) recovered from 1,2-addition reactions (after 1st run (red) and 8th run (blue)). (c) EXAFS data (squares) and best fits(lines) for E2-MOF·RhCl. Data are displayed in R-space containing both magnitude of Fourier transform and real components. An R-factor of 0.01 was obtained for the fit. (d) A comparison of EXAFS data for E2-MOF·RhCl, RhCl(LMe2), and the [RhCl(nbd)]2 dimer. (e) EXAFS data (squares) and best fits (lines) for E2-MOF·Rh(acac). An R-factor of 0.016 was obtained for the fit. (f) A comparison of EXAFS data for E2-MOF·Rh(acac) and Rh(acac)-LMe2.
Fig. 3
Fig. 3. (a) Structures of rhodium-coordinated diene complexes in MOF catalyst and the homogeneous control catalyst. (b) Plot of yield (%) and ee (%) of 1,2-addition product at various runs in the recycle and reuse of E2-MOF·Rh(acac) (6 mol% Rh) for 1,2-addition of aldimine 4a with phenylboronic acid (2a).

References

    1. Suh M. P., Park H. J., Prasad T. K., Lim D.-W. Chem. Rev. 2012;112:782–835. - PubMed
    2. Dincă M., Long J. R. Angew. Chem., Int. Ed. 2008;47:6766–6779. - PubMed
    3. Rowsell J. L. C., Yaghi O. M. Angew. Chem., Int. Ed. 2005;44:4670–4679. - PubMed
    1. Liu D., Lu K., Poon C., Lin W. Inorg. Chem. 2014;53:1916–1924. - PMC - PubMed
    2. Kreno L. E., Leong K., Farha O. K., Allendorf M., van Duyne R. P., Hupp J. T. Chem. Rev. 2012;112:1105–1125. - PubMed
    3. Cui Y., Yue Y., Qian G., Chen B. Chem. Rev. 2012;112:1126–1162. - PubMed
    4. Allendorf M. D., Bauer C. A., Bhakta R. K., Houk R. J. T. Chem. Soc. Rev. 2009;38:1330–1352. - PubMed
    1. Lin W., Rieter W. J., Taylor K. M. L. Angew. Chem., Int. Ed. 2009;48:650–658. - PMC - PubMed
    1. Horcajada P., Gref R., Baati T., Allan P. K., Maurin G., Couvreur P., Férey G., Morris R. E., Serre C. Chem. Rev. 2012;112:1232–1268. - PubMed
    2. Rocca J. D., Liu D., Lin W. Acc. Chem. Res. 2011;44:957–968. - PMC - PubMed
    3. Huxford R. C., Rocca J. D., Lin W. Curr. Opin. Chem. Biol. 2010;14:262–268. - PMC - PubMed
    1. Wang C., Zhang T., Lin W. Chem. Rev. 2012;112:1084–1104. - PubMed
    2. Evans O. R., Lin W. Acc. Chem. Res. 2002;35:511–522. - PubMed