Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 1;7(1):136-141.
doi: 10.1039/c5sc03854e. Epub 2015 Nov 17.

Diene hydroaminomethylation via ruthenium-catalyzed C-C bond forming transfer hydrogenation: beyond carbonylation

Affiliations

Diene hydroaminomethylation via ruthenium-catalyzed C-C bond forming transfer hydrogenation: beyond carbonylation

Susumu Oda et al. Chem Sci. .

Abstract

Under the conditions of ruthenium catalyzed transfer hydrogenation using 2-propanol as terminal reductant, 1,3-dienes engage in reductive C-C coupling with formaldimines obtained in situ from 1,3,5-tris(aryl)-hexahydro-1,3,5-triazines to form homoallylic amines. Deuterium labelling studies corroborate a mechanism involving reversible diene hydroruthenation to form an allylruthenium complex that engages in turn-over limiting imine addition. Protonolysis of the resulting amidoruthenium species releases product and delivers a ruthenium alkoxide, which upon β-hydride elimination closes the catalytic cycle. These transformations, which include enantioselective variants, represent the first examples of diene hydroaminomethylation.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Hydroaminomethylation via carbonylation or 2-propanol mediated reductive coupling.
Scheme 2
Scheme 2. Conversion of hydroaminomethylation products 3b and 3i to compounds 4b and 4i, respectively. aYields are of material isolated by silica gel chromatography. (a) (HO)2CCO2H, MeCN–H2O, 25 °C, 80% yield, 10 : 1 dr (b) BrCH2CHCH2, K2CO3, DMF, 25 °C, 75% yield. (c) Grubbs-II, DCM, 40 °C, 72% yield. See ESI for further experimental details.
Scheme 3
Scheme 3. Enantioselective ruthenium catalyzed hydroaminomethylation of butadiene 1a and isoprene 1b. aYields are of material isolated by silica gel chromatography. Enantiomeric ratios were determined by chiral stationary phase HPLC analysis. bXylene (0.5 M), 140 °C. See ESI for further experimental details.
Scheme 4
Scheme 4. Deuterium labelling studies of the ruthenium catalyzed hydroaminomethylation of isoprene 1b. aYields are of material isolated by silica gel chromatography. bXylene (0.5 M), 140 °C. See ESI for further experimental details.
Scheme 5
Scheme 5. General mechanism for ruthenium catalyzed diene hydroaminomethylation via transfer hydrogenation.

References

    1. For selected reviews on hydroaminomethylation, see:

    2. Eilbracht P., Bärfacker L., Buss C., Hollmann C., Kitsos-Rzychon B. E., Kranemann C. L., Rishe T., Roggenbuck R., Schmidt A. Chem. Rev. 1999;99:3329. - PubMed
    3. Breit B., Seiche W. Synthesis. 2001:1.
    4. Eilbracht P., Schmidt A. M. Top. Organomet. Chem. 2006;18:65.
    5. Crozet D., Urrutigoity M., Kalck P. ChemCatChem. 2011;3:1102.
    6. Behr A., Vorholt A. J. Top. Organomet. Chem. 2012;39:103.
    7. Raoufmoghaddam S. Org. Biomol. Chem. 2014;12:7179. - PubMed
    8. Wu X.-F., Fang X., Wu L., Jackstell R., Neumann H., Beller M. Acc. Chem. Res. 2014;47:1041. - PubMed
    1. Franke R., Selent D., Börner A. Chem. Rev. 2012;112:5675. - PubMed
    1. Thiel O., Bernard C., Larsen R., Martinelli M. J. and Raza M. T., (Amgen Inc.) WO Patent 2009002427, 2008. transChem. Abstr., 2007, 71, 12990.
    2. Briggs J. R., Klosin J., Whiteker G. T. Org. Lett. 2005;7:4795. - PubMed
    3. Whiteker G. Top. Catal. 2010;53:1025.
    1. Reppe's pioneering studies employ near stoichiometric loadings of Fe(CO)5:

    2. Reppe W. Experientia. 1949;5:93.
    3. Reppe W., Vetter H. Liebigs Ann. Chem. 1953;582:133.
    1. Finch H.de V. and Meeker R. E., (Shell Oil Company) US Pat., 3234283, 1966. transChem. Abstr., 1965, 62, 14500b.
    2. Biale G., (Union Oil Company) US Pat., 3513200, 1970. transChem. Abstr., 1970, 73, 34776a.
    3. Iqbal A. F. M. Helv. Chim. Acta. 1971;54:1440.
    4. Imai T., (Uop Inc.) US. Pat., 4220764, 1978. transChem. Abstr., 1980, 93, 239429d.
    5. Laine R. M. J. Org. Chem. 1980;45:3370.
    6. Jachimowicz F., (W. R. Grace and Co.) Belgian Patent 887630, 1980. transChem. Abstr., 1981, 95, 152491k.
    7. Jachimowicz F., Raksis J. W. J. Org. Chem. 1982;47:445.
    8. Murata K., Matsuda A., Masuda T. J. Mol. Catal. 1984;23:121.
    9. Jachimowicz F. and Manson P., (W. R. Grace and Co.) Canadian Patent 123 1199, 1984. transChem. Abstr., 1988, 109, 38485u.
    10. MacEntire E. E. and Knifion J. F., (Texaco Development Corp.) EP 240193, 1987. transChem. Abstr., 1989, 110, 134785h.
    11. Jones M. D. J. Organomet. Chem. 1989;366:403.
    12. Drent E. and Breed A. J. M., (Shell Int. Res. M.) EP 457386, 1992. transChem. Abstr., 1992, 116, 83212h.
    13. Törös S., Gémes-Pésci I., Heil B., Mahó S., Tuba Z. J. Chem. Soc., Chem. Commun. 1992:858.
    14. Baig T., Kalck P. J. Chem. Soc., Chem. Commun. 1992:1373.
    15. Baig T., Molinier J., Kalck P. J. Organomet. Chem. 1993;455:219.
    16. Diekhaus G., Kampmann D., Kniep C., Müller T., Walter J. and Weber J., (Hoechst AG) DE 4334809, 1993. transChem. Abstr., 1995, 122, 314160g.
    17. Brunet J. J., Neibecker D., Agbossou F., Srivastava R. S. J. Mol. Catal. 1994;87:223.
    18. Beller M., Cornils B., Frohning C. D., Kohlpainter C. W. J. Mol. Catal. A: Chem. 1995;104:17.