Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 1;7(1):315-328.
doi: 10.1039/c5sc03197d. Epub 2015 Sep 23.

Cascade reactions of nitrogen-substituted isocyanates: a new tool in heterocyclic chemistry

Affiliations

Cascade reactions of nitrogen-substituted isocyanates: a new tool in heterocyclic chemistry

Jean-François Vincent-Rocan et al. Chem Sci. .

Abstract

In contrast to normal C-substituted isocyanates, nitrogen-substituted isocyanates (N-isocyanates) are rare. Their high reactivity and amphoteric/ambident nature has prevented the scientific community from exploiting their synthetic potential. Recently, we have developed an in situ formation approach using a reversible equilibrium, which allows controlled generation and reactivity of N-isocyanates and prevents the dimerization that is typically observed with these intermediates. This blocked (masked) N-isocyanate approach enables the use of various N-isocyanate precursors to assemble heterocycles possessing the N-N-C[double bond, length as m-dash]O motif, which is often found in agrochemicals and pharmaceuticals. Cascade reactions for the rapid assembly of several valuable 5- and 6-membered heterocycles are reported, including amino-hydantoins, acyl-pyrazoles, acyl-phthalazinones and azauracils. Over 100 different compounds were synthesized using amino-, imino- and amido-substituted N-isocyanates, demonstrating their potential as powerful intermediates in heterocyclic synthesis. Their reactivity also enables access to unprecedented bicyclic derivatives and to substitution patterns of azauracils that are difficult to access using known methods, illustrating that controlled reactivity of N-isocyanates provides new disconnections, and a new tool to assemble complex N-N-C[double bond, length as m-dash]O containing motifs.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Synthetic applications of N-isocyanate intermediates.
Fig. 1
Fig. 1. Prevalence of N–N–CO motif in the agrochemical (left) and pharmaceutical industries (right).
Scheme 2
Scheme 2. Impact of the hydrazide conformation on hydroamination reactivity.
Scheme 3
Scheme 3. Comparison of hydantoin synthesis versus hydroamination cascade.
Scheme 4
Scheme 4. Comparison of existing method versus N-isocyanate synthesis of substituted phthalazinones.
Scheme 5
Scheme 5. Comparison of existing method versus N-isocyanate synthesis of substituted pyrazoles.
Scheme 6
Scheme 6. Cascade reactions forming 6-azauracils: possible divergent reactivity of diamines.

References

    1. For reviews on isocyanates and their use in industry see: , For polyurethane application see:

    2. Six C. and Richter F., Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, 2012, vol. 20, pp. 63–82.
    3. Isocyanates, Organic. Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, New York, 3rd edn, 1982, vol. 19, pp. 28–62.
    4. Wang Z., Comprehensive Organic Name Reactions and Reagents, Wiley, New York, 2009, pp.1772–1774.
    5. Engels H.-W., Pirkl H.-G., Albers R., Albach R. W., Krause J., Hoffman A., Casselmann H., Dormish J. Angew. Chem., Int. Ed. 2013;52:9422. - PubMed
    1. Wicks D. A., Jr. Wicks Z. W. Prog. Org. Coat. 1999;36:148.
    2. Wicks D. A., Jr. Wicks Z. W. Prog. Org. Coat. 2001;41:1.
    3. Jr. Wicks Z. W., Jones F. N., Pappas S. P. and Wicks D. A., Organic Coatings: Science and Technology, Wiley-VCH, 2007, pp. 231–245.
    1. For examples of nitrogen-containing amphoteric reagents, see:

    2. Hili R., Yudin A. K. J. Am. Chem. Soc. 2006;128:14772. - PubMed
    3. Li X., Yudin A. K. J. Am. Chem. Soc. 2007;129:14152. - PubMed
    4. Hili R., Baktharaman S., Yudin A. K. Eur. J. Org. Chem. 2008:5201.
    5. Hili R., Yudin A. K. Angew. Chem., Int. Ed. 2008;47:4188. - PubMed
    6. Hili R., Yudin A. K. J. Am. Chem. Soc. 2009;131:16404. - PubMed
    7. Rotstein B. H., Rai V., Hili R., Yudin A. K. Nat. Protoc. 2010;5:1813. - PubMed
    8. He Z., Zajdlik A., St. Denis J. D., Assem N., Yudin A. K. J. Am. Chem. Soc. 2012;134:9926. - PubMed
    9. Assem N., Hili R., Kasahara T., He Z., Inman B. L., Decker S., Yudin A. K. J. Org. Chem. 2012;77:5613. - PubMed
    10. Roxin A., Chen J., Scully C. C. G., Rotstein B. H., Yudin A. K., Zheng G. Bioconjugate Chem. 2012;23:1387. - PubMed
    11. W Chung B. K., Hickey J. L., Scully C. C. G., Zaretsky S., Yudin A. K. MedChemComm. 2013;4:1124.
    12. Liew S., He Z., St. Denis J. D., Yudin A. K. J. Org. Chem. 2013;78:11637. - PubMed
    13. Belding L., Zaretsky S., Rotstein B. H., Yudin A. K. J. Org. Chem. 2014;79:9465. - PubMed
    14. He Z., Zajdlik A., Yudin A. K. Acc. Chem. Res. 2014;47:1029. - PubMed
    15. St. Denis J. D., He Z., Yudin A. K. ACS Catal. 2015;5:5373.
    16. Zaretsky S., Hickey J. L., Tan J., Pichugin D., St. Denis M. A., Ler S., Chung B. K. W., Scully C. C. G., Yudin A. K. Chem. Sci. 2015;6:5446. - PMC - PubMed
    1. Busch M. Chem. Cent. J. 1901;i:933.
    2. Acree S. F. Ber. Dtsch. Chem. Ges. 1903;36:3154.
    3. Stollé R. J. Prakt. Chem. 1927;116:192.
    4. Stollé R. J. Prakt. Chem. 1928;117:185.
    5. Lwowski W., DeMauriac R. Tetrahedron Lett. 1964;44:3285.
    6. Anthoni U., Larsen C., Nielsen P. H. Acta Chem. Scand. 1966;20:1714.
    7. McElhinney R. S. J. Chem. Soc. C. 1966:951. - PubMed
    8. Wadsworth W. S., Emmons W. D. J. Org. Chem. 1967;32:1279.
    9. Anthoni U., Larsen C., Nielsen P. H. Acta Chem. Scand. 1967;21:6.
    10. Anthoni U., Larsen C., Nielsen P. H. Acta Chem. Scand. 1967;21:2061.
    11. Anthoni U., Larsen C., Nielsen P. H. Acta Chem. Scand. 1967;21:2571.
    12. Anthoni U., Larsen C., Nielsen P. H. Acta Chem. Scand. 1967;21:2580.
    13. Anthoni U., Larsen C., Nielsen P. H. Acta Chem. Scand. 1968;22:309.
    14. Anthoni U., Larsen C., Nielsen P. H. Acta Chem. Scand. 1968;22:1898.
    15. Moller J., Anthoni U., Larsen C., Nielsen P. H. Acta Chem. Scand. 1968;22:2493.
    16. Larsen C., Anthoni U., Nielsen P. H. Acta Chem. Scand. 1969;23:320.
    17. Larsen C., Anthoni U., Christophersen C., Nielsen P. H. Acta Chem. Scand. 1969;23:322.
    18. Larsen C., Anthoni U., Nielsen P. H. Acta Chem. Scand. 1969;23:537.
    19. Larsen C., Dahl O., Anthoni U., Nielsen P. H. Acta Chem. Scand. 1969;23:943.
    20. Larsen C., Anthoni U., Nielsen P. H. Acta Chem. Scand. 1969;23:1439.
    21. Larsen C., Anthoni U., Nielsen P. H. Acta Chem. Scand. 1969;23:3385.
    22. Anthoni U., Berg C. Acta Chem. Scand. 1969;23:3602.
    23. Larsen C., Jakobsen P. Acta Chem. Scand. 1970;24:324.
    24. Alt G. H., Chupp J. P. Tetrahedron Lett. 1970;36:3155.
    25. Chupp J. P. J. Heterocycl. Chem. 1971;8:557.
    26. Kerber R. C., Ryan T. J. J. Org. Chem. 1971;36:1971.
    27. Lwowski W., DeMauriac R. A., Murray R. A., Lunow L. Tetrahedron Lett. 1971;5:1971.
    28. Seckinger K. Helv. Chim. Acta. 1973;56:2061.
    29. Lockley W. J. S., Ramakrishnan V. T., Lwowski W. Tetrahedron Lett. 1974;30:2621.
    30. Lockley W. J. S., Lwowski W. Tetrahedron Lett. 1974;48:4263.
    31. Lwowski W., DeMauriac R. A., Thompson M., Wilde R. E., Chen S. Y. J. Org. Chem. 1975;40:2608.
    32. Reichen W. Helv. Chim. Acta. 1976;59:2601.
    33. Ramakrishnan K., Fulton J. B., Warkentin J. Tetrahedron. 1976;32:2685.
    34. Reichen W. Helv. Chim. Acta. 1977;60:498.
    35. Reichen W. Chem. Rev. 1978;78:569.
    36. Kurz M., Reichen W. Tetrahedron Lett. 1978;19:1433.
    37. Wiberg N., Hübler G. Z. Naturforsch. 1978;33b:575.
    38. Jones D. W. J. Chem. Soc., Chem. Commun. 1982:766.
    39. Theis W., Bethäuser W., Regitz M. Chem. Ber. 1985;118:28.
    40. Lwowski W., Kanemasa S., Murray R. A., Ramakrishnan V. T., Thiruvengadam T. K., Yoshida K., Subbaraj A. J. Org. Chem. 1986;51:1719.
    41. Gibson H. H., Weissinger K., Abashawl A., Hall G., Lawshae T., LeBlanc K., Moody J., Lwowski W. J. Org. Chem. 1986;51:3858.
    42. Senet J.-P., Vergne G., Wooden G. P. Tetrahedron Lett. 1986;27:6319.
    43. Maier G., Teles H. Chem. Ber. 1989;122:745.
    44. Squillacote M., de Felippis J. J. Org. Chem. 1994;59:3564.
    45. Schulz A., Klapötke T. M. Inorg. Chem. 1996;35:4791. - PubMed
    46. Han H., Janda K. D. J. Am. Chem. Soc. 1996;118:2539.
    47. Maier G., Naumann M., Reisenauer H. P., Eckwert J. Angew. Chem., Int. Ed. 1996:1696.
    48. Xing R., Hanzlik R. P. J. Med. Chem. 1998;41:1344. - PubMed
    49. Kirilin A. D., Dokuchayev A. A., Sokova N. B., Chernyshev E. A. Russ. Chem. Bull. 1999;48:169.
    50. Shah S. N., Chudgar N. K. Molecules. 2000;5:657.
    51. Kozai S., Takaoka S., Maruyama T. Tetrahedron Lett. 2002;43:2633.
    52. Gehrmann T., Fillol J. L., Wadepohl H., Gade L. H. Organometallics. 2010;29:28.
    53. Wentrup C., Finnerty J. J., Koch R. Curr. Org. Chem. 2011;15:1745. - PubMed
    54. Tiong P. J., Nova A., Groom L. R., Schwarz A. D., Selby J. D., Schofield A. D., Clot E., Mountford P. Organometallics. 2011;30:1182.
    55. Zeng X., Beckers H., Willner H. Angew. Chem., Int. Ed. 2011;50:482. - PubMed
    56. Pasinszki T., Krebsz M., Tarczay G., Wentrup C. J. Org. Chem. 2013;78:11985. - PubMed
    57. Shao J., Liu X., Shu K., Tang P., Luo J., Chen W., Yu Y. Org. Lett. 2015;17:4502. - PubMed
    1. Roveda J.-G., Clavette C., Hunt A. D., Whipp C. J., Gorelsky S. I., Beauchemin A. M. J. Am. Chem. Soc. 2009;131:8740. - PubMed
    2. Clavette C., Gan W., Bongers A., Markiewicz T., Toderian A. B., Gorelsky S. I., Beauchemin A. M. J. Am. Chem. Soc. 2012;134:16111. - PubMed
    3. Gan W., Moon P. J., Clavette C., Das Neves N., Markiewicz T., Toderian A. B., Beauchemin A. M. Org. Lett. 2013;15:1890. - PubMed
    4. Lavergne K., Bongers A., Betit L., Beauchemin A. M. Org. Lett. 2015;17:3612. - PubMed

LinkOut - more resources