Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Oct;30(41):e1706293.
doi: 10.1002/adma.201706293. Epub 2018 Jun 3.

Highly Reactive Metastable Intermixed Composites (MICs): Preparation and Characterization

Affiliations
Review

Highly Reactive Metastable Intermixed Composites (MICs): Preparation and Characterization

Wei He et al. Adv Mater. 2018 Oct.

Abstract

Highly reactive metastable intermixed composites (MICs) have attracted much attention in the past decades. The MIC family of materials mainly includes traditional metal-based nanothermites, novel core-shell-structured, 3D ordered macroporous-structured, and ternary nanocomposites. By applying special fabrication approaches, highly reactive MICs with uniformly dispersed reactants, "layer-by-layer" or "core-shell" structures, can be prepared. Thus, the combustion performance can be greatly improved, and the ignition characteristics and safety can be precisely controlled by using a certain preparation strategy. Here, the preparation and characterization of the MICs that have been developed during the past few decades are summarized. Traditional preparation methods for MICs generally include physical mixing, high-energy ball milling, sol-gel synthesis, and vapor deposition, while the novel methods include self-assembly, electrophoretic deposition, and electrospinning. Various preparation procedures and the ignition and combustion performance of different MIC reactive systems are compared and discussed. In particular, the advantages of novel structured MICs in terms of safety and combustion efficiency are clarified, based on which suggestions regarding the possible future research directions are proposed.

Keywords: MICs; energetic materials; metal fuels; nanothermites; oxidation.

PubMed Disclaimer

LinkOut - more resources