Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 May 22:9:530.
doi: 10.3389/fphar.2018.00530. eCollection 2018.

Anticancer Activity and Mechanism of Xanthohumol: A Prenylated Flavonoid From Hops (Humulus lupulus L.)

Affiliations
Review

Anticancer Activity and Mechanism of Xanthohumol: A Prenylated Flavonoid From Hops (Humulus lupulus L.)

Chuan-Hao Jiang et al. Front Pharmacol. .

Abstract

It has been observed that many phytochemicals, frequently present in foods or beverages, show potent chemopreventive or therapeutic properties that selectively affect cancer cells. Numerous studies have demonstrated the anticancer activity of xanthohumol (Xn), a prenylated flavonoid isolated from hops (Humulus lupulus L.), with a concentration up to 0.96 mg/L in beer. This review aims to summarize the existing studies focusing on the anticancer activity of Xn and its effects on key signaling molecules. Furthermore, the limitations of current studies and challenges for the clinical use of Xn are discussed.

Keywords: anticancer; hops; molecular mechanism; phytochemical; xanthohumol.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Hops (Humulus lupulus L.) and structure of Xn.
FIGURE 2
FIGURE 2
Cellular and molecular mechanisms involved in anticancer activity of Xn.

References

    1. Arczewska M., Kaminski D. M., Gorecka E., Pociecha D., Roj E., Slawinska-Brych A., et al. (2013). The molecular organization of prenylated flavonoid xanthohumol in DPPC multibilayers: X-ray diffraction and FTIR spectroscopic studies. 1828 213–222. 10.1016/j.bbamem.2012.10.009 - DOI - PubMed
    1. Avula B., Ganzera M., Warnick J. E., Feltenstein M. W., Sufka K. J., Khan I. A. (2004). High-performance liquid chromatographic determination of xanthohumol in rat plasma, urine, and fecal samples. 42 378–382. 10.1093/chromsci/42.7.378 - DOI - PubMed
    1. Basak P., Sadhukhan P., Sarkar P., Sil P. C. (2017). Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy. 4 306–318. 10.1016/j.toxrep.2017.06.002 - DOI - PMC - PubMed
    1. Bassey-Archibong B. I., Kwiecien J. M., Milosavljevic S. B., Hallett R. M., Rayner L. G., Erb M. J., et al. (2016). Kaiso depletion attenuates transforming growth factor-beta signaling and metastatic activity of triple-negative breast cancer cells. 5:e208. 10.1038/oncsis.2016.17 - DOI - PMC - PubMed
    1. Benelli R., Vene R., Ciarlo M., Carlone S., Barbieri O., Ferrari N. (2012). The AKT/NF-kappaB inhibitor xanthohumol is a potent anti-lymphocytic leukemia drug overcoming chemoresistance and cell infiltration. 83 1634–1642. 10.1016/j.bcp.2012.03.006 - DOI - PubMed

LinkOut - more resources