Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 May;233(2):409-17.

Inhibitory effect of methacholine on drug-induced relaxation, cyclic AMP accumulation, and cyclic AMP-dependent protein kinase activation in canine tracheal smooth muscle

  • PMID: 2987480

Inhibitory effect of methacholine on drug-induced relaxation, cyclic AMP accumulation, and cyclic AMP-dependent protein kinase activation in canine tracheal smooth muscle

T J Torphy et al. J Pharmacol Exp Ther. 1985 May.

Abstract

Functional antagonism between bronchoconstricting and bronchodilating pathways was examined in canine tracheal smooth muscle. Trachealis strips were contracted with either 0.3 microM (EC55) or 3.0 microM (EC80) methacholine before being relaxed by the cumulative addition of isoproterenol, prostaglandin E2, or forskolin. The EC50 for all three relaxants was increased 10-fold in tissues contracted with 3.0 microM methacholine vs. those contracted with 0.3 microM methacholine. Moreover, contracting tissues with the higher concentration of methacholine reduced the maximum relaxation induced by prostaglandin E2 and isoproterenol. Forskolin produced total relaxation regardless of the concentration of methacholine used and thus was a much more effective bronchodilator than either isoproterenol or prostaglandin E2. The inhibitory effect of methacholine on the relaxant response to these agents was paralleled by a reduction in drug-stimulated cyclic AMP-dependent protein kinase activity. Methacholine reduced the maximum activation of cyclic AMP-dependent protein kinase elicited by isoproterenol, prostaglandin E2 and submaximal concentrations of forskolin, which was a much more powerful enzyme activator than the other two agents. The ability of a maximum concentration of forskolin (30 microM) to activate cyclic AMP-dependent protein kinase was not inhibited by methacholine. Although methacholine also appeared to suppress drug-stimulated cyclic AMP accumulation, the inhibitory effect was only statistically significant in forskolin-treated tissues.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms