Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May 23:5:40.
doi: 10.3389/fcvm.2018.00040. eCollection 2018.

Pulmonary Hypertension in Aortic and Mitral Valve Disease

Affiliations

Pulmonary Hypertension in Aortic and Mitral Valve Disease

Micha T Maeder et al. Front Cardiovasc Med. .

Abstract

In patients with aortic and/or mitral valve disease the presence of pulmonary hypertension (PH) indicates a decompensated state of the disease with left ventricular and left atrial dysfunction and exhausted compensatory mechanism, i.e., a state of heart failure. Pulmonary hypertension in this context is the consequence of the backwards transmission of elevated left atrial pressure. In this form of PH, pulmonary vascular resistance is initially normal (isolated post-capillary PH). Depending on the extent and chronicity of left atrial pressure elevation additional pulmonary vascular remodeling may occur (combined pre- and post-capillary PH). Mechanical interventions for the correction of valve disease often but not always reduce pulmonary pressures. However, the reduction in pulmonary pressures is often modest, and persistent PH in these patients is common and a marker of poor prognosis. In the present review we discuss the pathophysiology and clinical impact of PH in patients with aortic and mitral valve disease, the comprehensive non-invasive and invasive diagnostic approach required to define treatment of PH, and recent insights from mechanistic studies, registries and randomized studies, and we provide an outlook regarding gaps in evidence, future clinical challenges, and research opportunities in this setting.

Keywords: aortic stenosis; combined pre- and post-capillary; mitral regurgitation; post-capillary; pre-capillary; pulmonary hypertension; valve disease.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Normal hemodynamic situation of the circulation from the right heart across the lung and the left heart. AV: aortic valve, CO2: carbon dioxide, LA: left atrium, LAP: left atrial pressure, LV: left ventricle, LVEDP: left ventricular enddiastolic pressure, mPAP: mean pulmonary artery pressure, mPAWP: mean pulmonary artery wedge pressure, MV: mitral valve, PA: pulmonary artery, PV: pulmonary veins, PVR: pulmonary vascular resistance, O2: oxygen, RV: right ventricle.
Figure 2
Figure 2
Hemodynamics of pulmonary hypertension (PH) other than group 2 PH in a patient with non-severe mitral stenosis (MS), mitral regurgitation (MR), aortic stenosis (AS), or aortic regurgitation (AR). PAH: pulmonary arterial hypertension, CTEPH: chronic thromboembolic PH. * typically relatively low. Other abbreviations as in Figure 1.
Figure 3
Figure 3
Hemodynamics of group 2 pulmonary hypertension due to non-valve disease related left ventricular (LV) dysfunction in a patient with non-severe mitral stenosis (MS), mitral regurgitation (MR), aortic stenosis (AS), or aortic regurgitation (AR). Other abbreviations as in Figure 1.
Figure 4
Figure 4
Suggested algorithm to detect pulmonary hypertension (PH) using echocardiography (echo) and right heart catheterization (RHC) in patients with left-sided valve disease (VD, i.e., mitral stenosis and/or regurgitation, aortic stenosis and/or regurgitation). 1low probability of PH: peak TRV ≤2.8 m/s and no indirect echocardiographic signs of PH 2intermediate probability of PH: peak TRV ≤2.8 m/s but indirect signs of PH or if peak TRV but without indirect signs of PH, high probability of PH: peak TRV 2.9–3.4 m/s with indirect signs of PH or peak TRV ≥3.4 m/s regardless of indirect signs of PH 3please see Figure 3.
Figure 5
Figure 5
Hemodynamics of severe mitral stenosis (MS). It should be noted that the LV is not affected by the valvular problem, and LVEDP is normal. A significant diastolic gradient between LVEDP and PAWP is characteristic. Abbreviations as in Figure 1.
Figure 6
Figure 6
Hemodynamics of severe primary mitral regurgitation (MR). There is volume overload and dilatation of the both LV and LA. Abbreviations as in Figure 1.
Figure 7
Figure 7
Hemodynamics of severe aortic stenosis (AS). There is pressure overload of the LV with concentric hypertrophy. The LA is secondarily affected by diastolic and systolic LV dysfunction. Abbreviations as in Figure 1.
Figure 8
Figure 8
Hemodynamics of severe aortic regurgitation (AS). There is volume overload and dilatation of the LV. The LA is secondarily affected by diastolic and systolic LV dysfunction. Abbreviations as in Figure 1.

References

    1. Maeder MT, Schoch OD, Kleiner R, Joerg L, Weilenmann D, Swiss Society For Pulmonary Hypertension. Pulmonary hypertension associated with left-sided heart disease. Swiss Med Wkly (2017) 147:w14395 10.4414/smw.2017.14395 - DOI - PubMed
    1. Weitsman T, Weisz G, Farkash R, Klutstein M, Butnaru A, Rosenmann D, et al. Pulmonary hypertension with left heart disease: prevalence, temporal shifts in etiologies and outcome. Am J Med (2017) 130(11):1272–9. 10.1016/j.amjmed.2017.05.003 - DOI - PubMed
    1. Magne J, Pibarot P, Sengupta PP, Donal E, Rosenhek R, Lancellotti P. Pulmonary hypertension in valvular disease: a comprehensive review on pathophysiology to therapy from the HAVEC Group. JACC Cardiovasc Imaging (2015) 8(1):83–99. 10.1016/j.jcmg.2014.12.003 - DOI - PubMed
    1. Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J (2016) 37(1):67–119. 10.1093/eurheartj/ehv317 - DOI - PubMed
    1. Fawzy ME, Osman A, Nambiar V, Nowayhed O, El DA, Badr A, et al. Immediate and long-term results of mitral balloon valvuloplasty in patients with severe pulmonary hypertension. J Heart Valve Dis (2008) 17(5):485–91. - PubMed

LinkOut - more resources