Inactivation of the transcription factor mig1 (YGL035C) in Saccharomyces cerevisiae improves tolerance towards monocarboxylic weak acids: acetic, formic and levulinic acid
- PMID: 29876685
- DOI: 10.1007/s10295-018-2053-1
Inactivation of the transcription factor mig1 (YGL035C) in Saccharomyces cerevisiae improves tolerance towards monocarboxylic weak acids: acetic, formic and levulinic acid
Abstract
Toxic concentrations of monocarboxylic weak acids present in lignocellulosic hydrolyzates affect cell integrity and fermentative performance of Saccharomyces cerevisiae. In this work, we report the deletion of the general catabolite repressor Mig1p as a strategy to improve the tolerance of S. cerevisiae towards inhibitory concentrations of acetic, formic or levulinic acid. In contrast with the wt yeast, where the growth and ethanol production were ceased in presence of acetic acid 5 g/L or formic acid 1.75 g/L (initial pH not adjusted), the m9 strain (Δmig1::kan) produced 4.06 ± 0.14 and 3.87 ± 0.06 g/L of ethanol, respectively. Also, m9 strain tolerated a higher concentration of 12.5 g/L acetic acid (initial pH adjusted to 4.5) without affecting its fermentative performance. Moreover, m9 strain produced 33% less acetic acid and 50-70% less glycerol in presence of weak acids, and consumed acetate and formate as carbon sources under aerobic conditions. Our results show that the deletion of Mig1p provides a single gene deletion target for improving the acid tolerance of yeast strains significantly.
Keywords: Acid tolerance; Catabolite repression; Ethanol; Hydrolysates; MIG1; Saccharomyces cerevisiae; Weak acids.
Similar articles
-
Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains.Biotechnol Lett. 2016 Jul;38(7):1097-106. doi: 10.1007/s10529-016-2085-4. Epub 2016 Apr 11. Biotechnol Lett. 2016. PMID: 27067354
-
The impact of MIG1 and/or MIG2 disruption on aerobic metabolism of succinate dehydrogenase negative Saccharomyces cerevisiae.Appl Microbiol Biotechnol. 2011 Feb;89(3):733-8. doi: 10.1007/s00253-010-2894-7. Epub 2010 Oct 12. Appl Microbiol Biotechnol. 2011. PMID: 20938771
-
Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae.Microb Cell Fact. 2011 Jan 10;10(1):2. doi: 10.1186/1475-2859-10-2. Microb Cell Fact. 2011. PMID: 21219616 Free PMC article.
-
Carbon catabolite repression: not only for glucose.Curr Genet. 2019 Dec;65(6):1321-1323. doi: 10.1007/s00294-019-00996-6. Epub 2019 May 22. Curr Genet. 2019. PMID: 31119370 Review.
-
Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.World J Microbiol Biotechnol. 2017 May;33(5):94. doi: 10.1007/s11274-017-2259-9. Epub 2017 Apr 12. World J Microbiol Biotechnol. 2017. PMID: 28405910 Review.
Cited by
-
D-Lactic Acid Production from Sugarcane Bagasse by Genetically Engineered Saccharomyces cerevisiae.J Fungi (Basel). 2022 Aug 3;8(8):816. doi: 10.3390/jof8080816. J Fungi (Basel). 2022. PMID: 36012804 Free PMC article.
-
Engineering robust microorganisms for organic acid production.J Ind Microbiol Biotechnol. 2022 Apr 14;49(2):kuab067. doi: 10.1093/jimb/kuab067. J Ind Microbiol Biotechnol. 2022. PMID: 34549297 Free PMC article. Review.
-
General mechanisms of weak acid-tolerance and current strategies for the development of tolerant yeasts.World J Microbiol Biotechnol. 2023 Dec 22;40(2):49. doi: 10.1007/s11274-023-03875-y. World J Microbiol Biotechnol. 2023. PMID: 38133718 Review.
-
Regulation of Cell Death Induced by Acetic Acid in Yeasts.Front Cell Dev Biol. 2021 Jun 24;9:642375. doi: 10.3389/fcell.2021.642375. eCollection 2021. Front Cell Dev Biol. 2021. PMID: 34249904 Free PMC article. Review.
-
The response mechanism analysis of HMX1 knockout strain to levulinic acid in Saccharomyces cerevisiae.Front Microbiol. 2024 Jun 26;15:1416903. doi: 10.3389/fmicb.2024.1416903. eCollection 2024. Front Microbiol. 2024. PMID: 38989024 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases