Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Nov 27;24(66):17405-17418.
doi: 10.1002/chem.201801588. Epub 2018 Oct 1.

Novel Bismuth-Based Nanomaterials Used for Cancer Diagnosis and Therapy

Affiliations
Review

Novel Bismuth-Based Nanomaterials Used for Cancer Diagnosis and Therapy

Yan Cheng et al. Chemistry. .

Abstract

Theranostic nanomaterials (NMs) have gained increasing attention for their simultaneous performance of diagnosis and therapy. Bi-based NMs hold great potential as theranostic platforms based on their X-ray sensitive capability, near-infrared driven semiconductor properties, and distinctive structures, which facilitate the computed tomography (CT) imaging, photoacoustic (PA) imaging, radiation therapy, and phototherapy. The sophisticated design in composition, structure, and surface fabrication of Bi-based NMs can endow these NMs with more modalities in cancer diagnosis and therapy. In this Minireview, we focus on the recent advances in Bi-based theranostic NMs. A series of unique structures and functions as well as the underlying property-activity relationship of Bi-based NMs are showcased to highlight their promising imaging and therapeutic performance. At the end, we propose some challenges for the design and preparation of Bi-based NMs to improve their cancer diagnostic and therapeutic performance.

Keywords: bismuth; cancer therapy; imaging; nanomaterials; theranostic platform.

PubMed Disclaimer

LinkOut - more resources