Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 6;4(6):eaar3330.
doi: 10.1126/sciadv.aar3330. eCollection 2018 Jun.

Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars

Affiliations

Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars

Thomas F Bristow et al. Sci Adv. .

Abstract

Clay minerals provide indicators of the evolution of aqueous conditions and possible habitats for life on ancient Mars. Analyses by the Mars Science Laboratory rover Curiosity show that ~3.5-billion year (Ga) fluvio-lacustrine mudstones in Gale crater contain up to ~28 weight % (wt %) clay minerals. We demonstrate that the species of clay minerals deduced from x-ray diffraction and evolved gas analysis show a strong paleoenvironmental dependency. While perennial lake mudstones are characterized by Fe-saponite, we find that stratigraphic intervals associated with episodic lake drying contain Al-rich, Fe3+-bearing dioctahedral smectite, with minor (3 wt %) quantities of ferripyrophyllite, interpreted as wind-blown detritus, found in candidate aeolian deposits. Our results suggest that dioctahedral smectite formed via near-surface chemical weathering driven by fluctuations in lake level and atmospheric infiltration, a process leading to the redistribution of nutrients and potentially influencing the cycling of gases that help regulate climate.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Stratigraphic column of sedimentary rocks at Gale crater observed by MSL, showing positions of drill samples.
The stratigraphic framework of Gale crater sediments shown here was established by Grotzinger et al. (2) and is actively updated and refined through the efforts of the MSL sedimentology/stratigraphy working group (14). SB, Sebina; QL, Quela; MB, Marimba; OU, Oudam; BK, Buckskin; TP, Telegraph Peak; MJ, Mojave2; CH, Confidence Hills; WJ, Windjana; JK/CB, John Klein/Cumberland.
Fig. 2
Fig. 2. Changes in abundances of environmentally sensitive mineralogical components in mudstones along MSLs’ traverse.
Samples are arranged in stratigraphic order. Mineral abundances and associated 1σ errors shown for John Klein and Cumberland, Confidence Hills to Buckskin, and Oudam to Sebina are sourced from Morrison et al. (10), Rampe et al. (7), and Table 1, respectively.
Fig. 3
Fig. 3. XRD patterns of clay mineral–bearing sample from Gale crater.
(A) Comparison of XRD patterns from Oudam, Marimba, Quela, and Sebina, with peaks assigned to clay minerals and other component minerals (A, anhydrite; B, bassanite; H, hematite; P, plagioclase). (B) Close-up comparison of Marimba, Quela, Sebina, and YKB XRD patterns with trioctahedral and dioctahedral smectite standards (SapCa-1 saponite and SAz-1 montmorillonite), showing the difference in 02l band position corresponding to a difference in octahedral occupancy. (C) BGMN model of the 02l band of Marimba showing contributions from trioctahedral and dioctahedral smectites.
Fig. 4
Fig. 4. SAM evolved H2O release of Marimba and Oudam.
Background has been subtracted from the EGA traces. The counts are not scaled.

References

    1. Grotzinger J. P., Sumner D. Y., Kah L. C., Stack K., Gupta S., Edgar L., Rubin D., Lewis K., Schieber J., Mangold N., Milliken R., Conrad P. G., DesMarais D., Farmer J., Siebach K., Calef F. III, Hurowitz J., McLennan S. M., Ming D., Vaniman D., Crisp J., Vasavada A., Edgett K. S., Malin M., Blake D., Gellert R., Mahaffy P., Wiens R. C., Maurice S., Grant J. A., Wilson S., Anderson R. C., Beegle L., Arvidson R., Hallet B., Sletten R. S., Rice M., Bell J. III, Griffes J., Ehlmann B., Anderson R. B., Bristow T. F., Dietrich W. E., Dromart G., Eigenbrode J., Fraeman A., Hardgrove C., Herkenhoff K., Jandura L., Kocurek G., Lee S., Leshin L. A., Leveille R., Limonadi D., Maki J., McCloskey S., Meyer M., Minitti M., Newsom H., Oehler D., Okon A., Palucis M., Parker T., Rowland S., Schmidt M., Squyres S., Steele A., Stolper E., Summons R., Treiman A., Williams R., Yingst A., MSL Science Team , A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars. Science 343, 1242777 (2014). - PubMed
    1. Grotzinger J. P., Gupta S., Malin M. C., Rubin D. M., Schieber J., Siebach K., Sumner D. Y., Stack K. M., Vasavada A. R., Arvidson R. E., Calef F. III, Edgar L., Fischer W. F., Grant J. A., Griffes J., Kah L. C., Lamb M. P., Lewis K. W., Mangold N., Minitti M. E., Palucis M., Rice M., Williams R. M. E., Yingst R. A., Blake D., Blaney D., Conrad P., Crisp J., Dietrich W. E., Dromart G., Edgett K. S., Ewing R. C., Gellert R., Hurowitz J. A., Kocurek G., Mahaffy P., McBride M. J., McLennan S. M., Mischna M., Ming D., Milliken R., Newsom H., Oehler D., Parker T. J., Vaniman D., Wiens R. C., Wilson S. A., Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 350, aac7575 (2015). - PubMed
    1. Vaniman D. T., Bish D. L., Ming D. W., Bristow T. F., Morris R. V., Blake D. F., Chipera S. J., Morrison S. M., Treiman A. H., Rampe E. B., Rice M., Achilles C. N., Grotzinger J. P., McLennan S. M., Williams J., Bell J. F. III, Newsom H. E., Downs R. T., Maurice S., Sarrazin P., Yen A. S., Morookian J. M., Farmer J. D., Stack K., Milliken R. E., Ehlmann B. L., Sumner D. Y., Berger G., Crisp J. A., Hurowitz J. A., Anderson R., Des Marais D. J., Stolper E. M., Edgett K. S., Gupta S., Spanovich N., MSL Science Team , Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars. Science 343, 1243480 (2014). - PubMed
    1. Bristow T. F., Bish D. L., Vaniman D. T., Morris R. V., Blake D. F., Grotzinger J. P., Rampe E. B., Crisp J. A., Achilles C. N., Ming D. W., Ehlmann B. L., King P. L., Bridges J. C., Eigenbrode J. L., Sumner D. Y., Chipera S. J., Michael Moorokian J., Treiman A. H., Morrison S. M., Downs R. T., Farmer J. D., Des Marais D., Sarrazin P., Floyd M. M., Mischna M. A., McAdam A. C., The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars. Am. Mineral. 100, 824–836 (2015). - PMC - PubMed
    1. McLennan S. M. Anderson R. B., Bell J. F. III, Bridges J. C., Calef F. III, Campbell J. L., Clark B. C., Clegg S., Conrad P., Cousin A., Des Marais D. J., Dromart G., Dyar M. D., Edgar L. A., Ehlmann B. L., Fabre C., Forni O., Gasnault O., Gellert R., Gordon S., Grant J. A., Grotzinger J. P., Gupta S., Herkenhoff K. E., Hurowitz J. A., King P. L., Le Mouélic S., Leshin L. A., Léveillé R., Lewis K. W., Mangold N., Maurice S., Ming D. W., Morris R. V., Nachon M., Newsom H. E., Ollila A. M., Perrett G. M., Rice M. S., Schmidt M. E., Schwenzer S. P., Stack K., Stolper E. M., Sumner D. Y., Treiman A. H., VanBommel S., Vaniman D. T., Vasavada A., Wiens R. C., Yingst R. A., MSL Science Team , Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars. Science 343, 1244734 (2014). - PubMed

Publication types