Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 21;10(24):11287-11292.
doi: 10.1039/c8nr00511g.

Magnetic hysteresis in self-assembled monolayers of Dy-fullerene single molecule magnets on gold

Affiliations

Magnetic hysteresis in self-assembled monolayers of Dy-fullerene single molecule magnets on gold

C-H Chen et al. Nanoscale. .

Abstract

Fullerene single molecule magnets (SMMs) DySc2N@C80 and Dy2ScN@C80 are functionalized via a 1,3-dipolar cycloaddition with surface-anchoring thioether groups. The SMM properties of Dy-fullerenes are substantially affected by the cycloaddition. Submonolayers of the physisorbed derivatives exhibit magnetic hysteresis on an Au(111) surface at 2 K as revealed by X-ray magnetic circular dichroism.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. (a) Scheme of a Prato reaction to obtain EMF-R derivatives (EMF = Sc3N@C80, DySc2N@C80 (1), and Dy2ScN@C80 (2)); (b) HPLC curves measured at the end of the reaction (grey traces) and for purified derivatives (coloured curves). The absence of the pristine fullerenes (HPLC peaks near 60 min) in the purified derivatives can be clearly seen; (c) Vis-NIR absorption spectra of 1-R and 2-R in toluene. Insets show MALDI mass-spectra (1,1,4,4-tetraphenyl-1,3-butadiene as a matrix). Despite considerable fragmentation to pristine fullerenes, molecular ions of 1-R and 2-R can be clearly seen.
Fig. 2
Fig. 2. (a) Magnetization curves of 1-R at temperatures 2–8 K, sweep rate 2.9 mT s–1. (b) Magnetization curves of 1-R and 1 at T = 2 K; the inset shows determination of the blocking temperatures of magnetization TB, sweep rate 5 K min–1. (c) Magnetization curves of 2-R at temperatures 1.8–5 K, sweep rate 2.9 mT s–1; (d) magnetization curves of 2-R and 2 at T = 2 K. The inset shows determination of TB, sweep rate 5 K min–1.
Fig. 3
Fig. 3. (a, b) X-ray absorption spectra of 1-R (a) and 2-R (b) at the Dy-M4,5 absorption edge measured at 2 K in the magnetic field of 6.5 T; I+ and I denote right-hand and left-hand circular polarization of incoming X-rays. (c, d) Magnetization curves of sub-monolayers of 1-R (c) and 2-R (d) measured by XMCD at 2 K with a sweep rate of 2 T min–1 (averaging over five measured curves, error bars are standard deviations).
Fig. 4
Fig. 4. Representative DFT-optimized configuration of Sc3N@C80-R on gold: (a) vertical configuration; (b) the structure with horizontal alignment of the linker and vertical orientation of the fullerene cage; (c) the structure with fully horizontal alignment of the linker and the fullerene core. Also shown for each structure are relative energies (ΔEtot), dispersion contribution (ΔEdisp), and the total charge transfer between the Sc3N@C80-R molecule and the substrate (ΔQ).

Similar articles

Cited by

References

    1. Sessoli R., Gatteschi D., Caneschi A., Novak M. A. Nature. 1993;365:141.
    2. Woodruff D. N., Winpenny R. E. P., Layfield R. A. Chem. Rev. 2013;113:5110. - PubMed
    3. Gatteschi D., Sessoli R. and Villain J., Molecular Nanomagnets, Oxford University Press, New York, 2006.
    4. Introduction to Molecular Magnetism: From Transition Metals to Lanthanides, ed. C. Benelli and D. Gatteschi, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015.
    1. Domingo N., Bellido E., Ruiz-Molina D. Chem. Soc. Rev. 2012;41:258. - PubMed
    2. Cornia A., Mannini M., Sainctavit P., Sessoli R. Chem. Soc. Rev. 2011;40:3076. - PubMed
    3. Holmberg R. J., Murugesu M. J. Mater. Chem. C. 2015;3:11986.
    1. Margheriti L., Chiappe D., Mannini M., Car P. E., Sainctavit P., Arrio M.-A., de Mongeot F. B., Cezar J. C., Piras F. M., Magnani A., Otero E., Caneschi A., Sessoli R. Adv. Mater. 2010;22:5488. - PubMed
    2. Wäckerlin C., Donati F., Singha A., Baltic R., Rusponi S., Diller K., Patthey F., Pivetta M., Lan Y., Klyatskaya S., Ruben M., Brune H., Dreiser J. Adv. Mater. 2016;28:5195. - PubMed
    1. Mannini M., Pineider F., Danieli C., Totti F., Sorace L., Sainctavit P., Arrio M. A., Otero E., Joly L., Cezar J. C., Cornia A., Sessoli R. Nature. 2010;468:417. - PubMed
    2. Mannini M., Pineider F., Sainctavit P., Danieli C., Otero E., Sciancalepore C., Talarico A. M., Arrio M.-A., Cornia A., Gatteschi D., Sessoli R. Nat. Mater. 2009;8:194. - PubMed
    3. Malavolti L., Lanzilotto V., Ninova S., Poggini L., Cimatti I., Cortigiani B., Margheriti L., Chiappe D., Otero E., Sainctavit P., Totti F., Cornia A., Mannini M., Sessoli R. Nano Lett. 2015;15:535. - PubMed
    1. Westerström R., Uldry A.-C., Stania R., Dreiser J., Piamonteze C., Muntwiler M., Matsui F., Rusponi S., Brune H., Yang S., Popov A., Büchner B., Delley B., Greber T. Phys. Rev. Lett. 2015;114:087201. - PubMed

LinkOut - more resources