Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 19;47(24):8158-8163.
doi: 10.1039/c8dt01844h.

Titanium-oxo clusters functionalized with catecholate-type ligands: modulating the optical properties through charge-transfer transitions

Affiliations

Titanium-oxo clusters functionalized with catecholate-type ligands: modulating the optical properties through charge-transfer transitions

Hai-Ting Lv et al. Dalton Trans. .

Abstract

Four phenylphosphonate-stabilized titanium-oxo clusters with varying functional ligands, namely, [Ti8(μ3-O)2(μ2-O)2(μ2-OiPr)4(OiPr)8(O3PC6H5)4(cat)2] (cat = catecholate), [Ti8(μ3-O)2(μ2-O)2(μ2-OiPr)4(OiPr)8(O3PC6H5)4(O2C10H6)2] (O2C10H6 = naphthalene-2,3-diolate), [Ti6(μ3-O)2(μ2-O)2(μ2-OiPr)4(OiPr)6(O3PC6H5)2(4-DMAB)2] (4-DMAB = 4-dimethylaminobenzoate), and [Ti6(μ3-O)2(μ2-O)2(μ2-OiPr)4(OiPr)6(O3PC6H5)2(4-CBA)2] (4-CBA = 4-cyanobenzoate) were synthesized and structurally characterized. The introduction of catecholate ligands effectively extended the visible absorption region up to 670 nm and reduced the band gap to 2.1 eV. DFT calculations revealed that the ligand-based energy levels could effectively modify the band structure of titanium-oxo clusters. The ligand-to-core charge transfer (LCCT) transition from the functional ligands to the cluster core is responsible for the low-energy charge transfer states. Photoelectrochemical and photocatalytic experiments show that functional ligands have significant influence on the physicochemical properties of titanium-oxo clusters.

PubMed Disclaimer

LinkOut - more resources