Registration of Laser Scanning Point Clouds: A Review
- PMID: 29883397
- PMCID: PMC5981425
- DOI: 10.3390/s18051641
Registration of Laser Scanning Point Clouds: A Review
Abstract
The integration of multi-platform, multi-angle, and multi-temporal LiDAR data has become important for geospatial data applications. This paper presents a comprehensive review of LiDAR data registration in the fields of photogrammetry and remote sensing. At present, a coarse-to-fine registration strategy is commonly used for LiDAR point clouds registration. The coarse registration method is first used to achieve a good initial position, based on which registration is then refined utilizing the fine registration method. According to the coarse-to-fine framework, this paper reviews current registration methods and their methodologies, and identifies important differences between them. The lack of standard data and unified evaluation systems is identified as a factor limiting objective comparison of different methods. The paper also describes the most commonly-used point cloud registration error analysis methods. Finally, avenues for future work on LiDAR data registration in terms of applications, data, and technology are discussed. In particular, there is a need to address registration of multi-angle and multi-scale data from various newly available types of LiDAR hardware, which will play an important role in diverse applications such as forest resource surveys, urban energy use, cultural heritage protection, and unmanned vehicles.
Keywords: coarse-to-fine strategy; laser scanning; point clouds; registration; review.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



Similar articles
-
Automatic Registration of TLS-TLS and TLS-MLS Point Clouds Using a Genetic Algorithm.Sensors (Basel). 2017 Aug 29;17(9):1979. doi: 10.3390/s17091979. Sensors (Basel). 2017. PMID: 28850100 Free PMC article.
-
Multi-level height maps-based registration method for sparse LiDAR point clouds in an urban scene.Appl Opt. 2021 May 10;60(14):4154-4164. doi: 10.1364/AO.419746. Appl Opt. 2021. PMID: 33983168
-
PLIN: A Network for Pseudo-LiDAR Point Cloud Interpolation.Sensors (Basel). 2020 Mar 12;20(6):1573. doi: 10.3390/s20061573. Sensors (Basel). 2020. PMID: 32178238 Free PMC article.
-
Systematic and Comprehensive Review of Clustering and Multi-Target Tracking Techniques for LiDAR Point Clouds in Autonomous Driving Applications.Sensors (Basel). 2023 Jul 3;23(13):6119. doi: 10.3390/s23136119. Sensors (Basel). 2023. PMID: 37447967 Free PMC article. Review.
-
Object Recognition, Segmentation, and Classification of Mobile Laser Scanning Point Clouds: A State of the Art Review.Sensors (Basel). 2019 Feb 16;19(4):810. doi: 10.3390/s19040810. Sensors (Basel). 2019. PMID: 30781508 Free PMC article. Review.
Cited by
-
New Target for Accurate Terrestrial Laser Scanning and Unmanned Aerial Vehicle Point Cloud Registration.Sensors (Basel). 2019 Jul 19;19(14):3179. doi: 10.3390/s19143179. Sensors (Basel). 2019. PMID: 31330968 Free PMC article.
-
Fast Method of Registration for 3D RGB Point Cloud with Improved Four Initial Point Pairs Algorithm.Sensors (Basel). 2019 Dec 24;20(1):138. doi: 10.3390/s20010138. Sensors (Basel). 2019. PMID: 31878250 Free PMC article.
-
Point cloud completion in challenging indoor scenarios with human motion.Front Robot AI. 2023 May 10;10:1184614. doi: 10.3389/frobt.2023.1184614. eCollection 2023. Front Robot AI. 2023. PMID: 37251352 Free PMC article. Review.
-
Automated Point Cloud Registration Approach Optimized for a Stop-and-Go Scanning System.Sensors (Basel). 2023 Dec 26;24(1):138. doi: 10.3390/s24010138. Sensors (Basel). 2023. PMID: 38203000 Free PMC article.
-
MInet: A Novel Network Model for Point Cloud Processing by Integrating Multi-Modal Information.Sensors (Basel). 2023 Jul 12;23(14):6327. doi: 10.3390/s23146327. Sensors (Basel). 2023. PMID: 37514622 Free PMC article.
References
-
- Anuta P.E. Spatial registration of multispectral and multitemporal digital imagery using fast Fourier transform techniques. IEEE Trans. Geosci. Electron. 1970;8:353–368. doi: 10.1109/TGE.1970.271435. - DOI
-
- Smith S.M., Brady J.M. SUSAN—A new approach to low level image processing. Int. J. Comput. Vis. 1997;23:45–78. doi: 10.1023/A:1007963824710. - DOI
-
- Lowe D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004;60:91–110. doi: 10.1023/B:VISI.0000029664.99615.94. - DOI
-
- Matas J., Chum O., Urban M., Pajdla T. Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 2004;22:761–767. doi: 10.1016/j.imavis.2004.02.006. - DOI
-
- Bay H., Tuytelaars T., Van Gool L. European Conference on Computer Vision. Springer; Berlin/Heidelberg, Germany: 2006. Surf: Speeded up robust features; pp. 404–417.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources